TheBloke commited on
Commit
9b105b2
1 Parent(s): d06daa9

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +451 -0
README.md ADDED
@@ -0,0 +1,451 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: berkeley-nest/Starling-LM-7B-alpha
3
+ datasets:
4
+ - berkeley-nest/Nectar
5
+ inference: false
6
+ language:
7
+ - en
8
+ library_name: transformers
9
+ license: cc-by-nc-4.0
10
+ model_creator: Berkeley-Nest
11
+ model_name: Starling LM 7B Alpha
12
+ model_type: mistral
13
+ prompt_template: 'GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
14
+
15
+ '
16
+ quantized_by: TheBloke
17
+ tags:
18
+ - reward model
19
+ - RLHF
20
+ - RLAIF
21
+ ---
22
+ <!-- markdownlint-disable MD041 -->
23
+
24
+ <!-- header start -->
25
+ <!-- 200823 -->
26
+ <div style="width: auto; margin-left: auto; margin-right: auto">
27
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
28
+ </div>
29
+ <div style="display: flex; justify-content: space-between; width: 100%;">
30
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
31
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
32
+ </div>
33
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
34
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
35
+ </div>
36
+ </div>
37
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
38
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
39
+ <!-- header end -->
40
+
41
+ # Starling LM 7B Alpha - GPTQ
42
+ - Model creator: [Berkeley-Nest](https://huggingface.co/berkeley-nest)
43
+ - Original model: [Starling LM 7B Alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)
44
+
45
+ <!-- description start -->
46
+ # Description
47
+
48
+ This repo contains GPTQ model files for [Berkeley-Nest's Starling LM 7B Alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha).
49
+
50
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
51
+
52
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
53
+
54
+ <!-- description end -->
55
+ <!-- repositories-available start -->
56
+ ## Repositories available
57
+
58
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-AWQ)
59
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GPTQ)
60
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GGUF)
61
+ * [Berkeley-Nest's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha)
62
+ <!-- repositories-available end -->
63
+
64
+ <!-- prompt-template start -->
65
+ ## Prompt template: OpenChat
66
+
67
+ ```
68
+ GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
69
+
70
+ ```
71
+
72
+ <!-- prompt-template end -->
73
+
74
+
75
+
76
+ <!-- README_GPTQ.md-compatible clients start -->
77
+ ## Known compatible clients / servers
78
+
79
+ These GPTQ models are known to work in the following inference servers/webuis.
80
+
81
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
82
+ - [KoboldAI United](https://github.com/henk717/koboldai)
83
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
84
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
85
+
86
+ This may not be a complete list; if you know of others, please let me know!
87
+ <!-- README_GPTQ.md-compatible clients end -->
88
+
89
+ <!-- README_GPTQ.md-provided-files start -->
90
+ ## Provided files, and GPTQ parameters
91
+
92
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
93
+
94
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
95
+
96
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
97
+
98
+ <details>
99
+ <summary>Explanation of GPTQ parameters</summary>
100
+
101
+ - Bits: The bit size of the quantised model.
102
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
103
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
104
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
105
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
106
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
107
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
108
+
109
+ </details>
110
+
111
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
112
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
113
+ | [main](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
114
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
115
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
116
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
117
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
118
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.30 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
119
+
120
+ <!-- README_GPTQ.md-provided-files end -->
121
+
122
+ <!-- README_GPTQ.md-download-from-branches start -->
123
+ ## How to download, including from branches
124
+
125
+ ### In text-generation-webui
126
+
127
+ To download from the `main` branch, enter `TheBloke/Starling-LM-7B-alpha-GPTQ` in the "Download model" box.
128
+
129
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Starling-LM-7B-alpha-GPTQ:gptq-4bit-32g-actorder_True`
130
+
131
+ ### From the command line
132
+
133
+ I recommend using the `huggingface-hub` Python library:
134
+
135
+ ```shell
136
+ pip3 install huggingface-hub
137
+ ```
138
+
139
+ To download the `main` branch to a folder called `Starling-LM-7B-alpha-GPTQ`:
140
+
141
+ ```shell
142
+ mkdir Starling-LM-7B-alpha-GPTQ
143
+ huggingface-cli download TheBloke/Starling-LM-7B-alpha-GPTQ --local-dir Starling-LM-7B-alpha-GPTQ --local-dir-use-symlinks False
144
+ ```
145
+
146
+ To download from a different branch, add the `--revision` parameter:
147
+
148
+ ```shell
149
+ mkdir Starling-LM-7B-alpha-GPTQ
150
+ huggingface-cli download TheBloke/Starling-LM-7B-alpha-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Starling-LM-7B-alpha-GPTQ --local-dir-use-symlinks False
151
+ ```
152
+
153
+ <details>
154
+ <summary>More advanced huggingface-cli download usage</summary>
155
+
156
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
157
+
158
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
159
+
160
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
161
+
162
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
163
+
164
+ ```shell
165
+ pip3 install hf_transfer
166
+ ```
167
+
168
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
169
+
170
+ ```shell
171
+ mkdir Starling-LM-7B-alpha-GPTQ
172
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Starling-LM-7B-alpha-GPTQ --local-dir Starling-LM-7B-alpha-GPTQ --local-dir-use-symlinks False
173
+ ```
174
+
175
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
176
+ </details>
177
+
178
+ ### With `git` (**not** recommended)
179
+
180
+ To clone a specific branch with `git`, use a command like this:
181
+
182
+ ```shell
183
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Starling-LM-7B-alpha-GPTQ
184
+ ```
185
+
186
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
187
+
188
+ <!-- README_GPTQ.md-download-from-branches end -->
189
+ <!-- README_GPTQ.md-text-generation-webui start -->
190
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
191
+
192
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
193
+
194
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
195
+
196
+ 1. Click the **Model tab**.
197
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Starling-LM-7B-alpha-GPTQ`.
198
+
199
+ - To download from a specific branch, enter for example `TheBloke/Starling-LM-7B-alpha-GPTQ:gptq-4bit-32g-actorder_True`
200
+ - see Provided Files above for the list of branches for each option.
201
+
202
+ 3. Click **Download**.
203
+ 4. The model will start downloading. Once it's finished it will say "Done".
204
+ 5. In the top left, click the refresh icon next to **Model**.
205
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Starling-LM-7B-alpha-GPTQ`
206
+ 7. The model will automatically load, and is now ready for use!
207
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
208
+
209
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
210
+
211
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
212
+
213
+ <!-- README_GPTQ.md-text-generation-webui end -->
214
+
215
+ <!-- README_GPTQ.md-use-from-tgi start -->
216
+ ## Serving this model from Text Generation Inference (TGI)
217
+
218
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
219
+
220
+ Example Docker parameters:
221
+
222
+ ```shell
223
+ --model-id TheBloke/Starling-LM-7B-alpha-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
224
+ ```
225
+
226
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
227
+
228
+ ```shell
229
+ pip3 install huggingface-hub
230
+ ```
231
+
232
+ ```python
233
+ from huggingface_hub import InferenceClient
234
+
235
+ endpoint_url = "https://your-endpoint-url-here"
236
+
237
+ prompt = "Tell me about AI"
238
+ prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
239
+ '''
240
+
241
+ client = InferenceClient(endpoint_url)
242
+ response = client.text_generation(prompt,
243
+ max_new_tokens=128,
244
+ do_sample=True,
245
+ temperature=0.7,
246
+ top_p=0.95,
247
+ top_k=40,
248
+ repetition_penalty=1.1)
249
+
250
+ print(f"Model output: {response}")
251
+ ```
252
+ <!-- README_GPTQ.md-use-from-tgi end -->
253
+ <!-- README_GPTQ.md-use-from-python start -->
254
+ ## Python code example: inference from this GPTQ model
255
+
256
+ ### Install the necessary packages
257
+
258
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
259
+
260
+ ```shell
261
+ pip3 install --upgrade transformers optimum
262
+ # If using PyTorch 2.1 + CUDA 12.x:
263
+ pip3 install --upgrade auto-gptq
264
+ # or, if using PyTorch 2.1 + CUDA 11.x:
265
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
266
+ ```
267
+
268
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
269
+
270
+ ```shell
271
+ pip3 uninstall -y auto-gptq
272
+ git clone https://github.com/PanQiWei/AutoGPTQ
273
+ cd AutoGPTQ
274
+ git checkout v0.5.1
275
+ pip3 install .
276
+ ```
277
+
278
+ ### Example Python code
279
+
280
+ ```python
281
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
282
+
283
+ model_name_or_path = "TheBloke/Starling-LM-7B-alpha-GPTQ"
284
+ # To use a different branch, change revision
285
+ # For example: revision="gptq-4bit-32g-actorder_True"
286
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
287
+ device_map="auto",
288
+ trust_remote_code=False,
289
+ revision="main")
290
+
291
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
292
+
293
+ prompt = "Tell me about AI"
294
+ prompt_template=f'''GPT4 User: {prompt}<|end_of_turn|>GPT4 Assistant:
295
+ '''
296
+
297
+ print("\n\n*** Generate:")
298
+
299
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
300
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
301
+ print(tokenizer.decode(output[0]))
302
+
303
+ # Inference can also be done using transformers' pipeline
304
+
305
+ print("*** Pipeline:")
306
+ pipe = pipeline(
307
+ "text-generation",
308
+ model=model,
309
+ tokenizer=tokenizer,
310
+ max_new_tokens=512,
311
+ do_sample=True,
312
+ temperature=0.7,
313
+ top_p=0.95,
314
+ top_k=40,
315
+ repetition_penalty=1.1
316
+ )
317
+
318
+ print(pipe(prompt_template)[0]['generated_text'])
319
+ ```
320
+ <!-- README_GPTQ.md-use-from-python end -->
321
+
322
+ <!-- README_GPTQ.md-compatibility start -->
323
+ ## Compatibility
324
+
325
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
326
+
327
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
328
+
329
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
330
+ <!-- README_GPTQ.md-compatibility end -->
331
+
332
+ <!-- footer start -->
333
+ <!-- 200823 -->
334
+ ## Discord
335
+
336
+ For further support, and discussions on these models and AI in general, join us at:
337
+
338
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
339
+
340
+ ## Thanks, and how to contribute
341
+
342
+ Thanks to the [chirper.ai](https://chirper.ai) team!
343
+
344
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
345
+
346
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
347
+
348
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
349
+
350
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
351
+
352
+ * Patreon: https://patreon.com/TheBlokeAI
353
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
354
+
355
+ **Special thanks to**: Aemon Algiz.
356
+
357
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
358
+
359
+
360
+ Thank you to all my generous patrons and donaters!
361
+
362
+ And thank you again to a16z for their generous grant.
363
+
364
+ <!-- footer end -->
365
+
366
+ # Original model card: Berkeley-Nest's Starling LM 7B Alpha
367
+
368
+ # Starling-RM-7B-alpha
369
+
370
+ <!-- Provide a quick summary of what the model is/does. -->
371
+
372
+ - **Developed by:** Banghua Zhu * , Evan Frick * , Tianhao Wu * , Hanlin Zhu and Jiantao Jiao.
373
+ - **Model type:** Language Model finetuned with RLHF / RLAIF
374
+ - **License:** Non commercial license
375
+ - **Finetuned from model:** [Openchat 3.5](https://huggingface.co/openchat/openchat_3.5) (based on [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1))
376
+
377
+
378
+
379
+ We introduce Starling-7B, an open large language model (LLM) trained by Reinforcement Learning from AI Feedback (RLAIF). The model harnesses the power of our new GPT-4 labeled ranking dataset, [berkeley-nest/Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar), and our new reward training and policy tuning pipeline. Starling-7B-alpha scores 8.09 in MT Bench with GPT-4 as a judge, outperforming every model to date on MT-Bench except for OpenAI's GPT-4 and GPT-4 Turbo. We release the ranking dataset [Nectar](https://huggingface.co/datasets/berkeley-nest/Nectar), the reward model [Starling-RM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha) and the language model [Starling-LM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-LM-7B-alpha) on HuggingFace, and an online demo in LMSYS [Chatbot Arena](https://chat.lmsys.org). Stay tuned for our forthcoming code and paper, which will provide more details on the whole process.
380
+
381
+ Starling-LM-7B-alpha is a language model trained from [Openchat 3.5](https://huggingface.co/openchat/openchat_3.5) with reward model [berkeley-nest/Starling-RM-7B-alpha](https://huggingface.co/berkeley-nest/Starling-RM-7B-alpha) and policy optimization method [advantage-induced policy alignment (APA)](https://arxiv.org/abs/2306.02231). The evaluation results are listed below.
382
+
383
+
384
+ | Model | Tuning Method | MT Bench | AlpacaEval | MMLU |
385
+ |-----------------------|------------------|----------|------------|------|
386
+ | GPT-4-Turbo | ? | 9.32 | 97.70 | |
387
+ | GPT-4 | SFT + PPO | 8.99 | 95.28 | 86.4 |
388
+ | **Starling-7B** | C-RLFT + APA | 8.09 | 91.99 | 63.9 |
389
+ | Claude-2 | ? | 8.06 | 91.36 | 78.5 |
390
+ | GPT-3.5-Turbo | ? | 7.94 | 89.37 | 70 |
391
+ | Claude-1 | ? | 7.9 | 88.39 | 77 |
392
+ | Tulu-2-dpo-70b | SFT + DPO | 7.89 | 95.1 | |
393
+ | Openchat-3.5 | C-RLFT | 7.81 | 88.51 | 64.3 |
394
+ | Zephyr-7B-beta | SFT + DPO | 7.34 | 90.60 | 61.4 |
395
+ | Llama-2-70b-chat-hf | SFT + PPO | 6.86 | 92.66 | 63 |
396
+ | Neural-chat-7b-v3-1 | SFT + DPO | 6.84 | 84.53 | 62.4 |
397
+ | Tulu-2-dpo-7b | SFT + DPO | 6.29 | 85.1 | |
398
+
399
+
400
+
401
+ For more detailed discussions, please check out our [blog post](https://starling.cs.berkeley.edu), and stay tuned for our upcoming code and paper!
402
+ <!-- Provide the basic links for the model. -->
403
+
404
+ - **Blog:** https://starling.cs.berkeley.edu/
405
+ - **Paper:** Coming soon!
406
+ - **Code:** Coming soon!
407
+
408
+
409
+
410
+ ## Uses
411
+
412
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
413
+ Our model follows the exact chat template and usage as [Openchat 3.5](https://huggingface.co/openchat/openchat_3.5). Please refer to their model card for more details.
414
+ In addition, our model is hosted on LMSYS [Chatbot Arena](https://chat.lmsys.org) for free test.
415
+
416
+ The conversation template is the same as Openchat 3.5:
417
+ ```
418
+ import transformers
419
+ tokenizer = transformers.AutoTokenizer.from_pretrained("openchat/openchat_3.5")
420
+
421
+ # Single-turn
422
+ tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant:").input_ids
423
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
424
+
425
+ # Multi-turn
426
+ tokens = tokenizer("GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:").input_ids
427
+ assert tokens == [1, 420, 6316, 28781, 3198, 3123, 1247, 28747, 22557, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747, 15359, 32000, 420, 6316, 28781, 3198, 3123, 1247, 28747, 1602, 460, 368, 3154, 28804, 32000, 420, 6316, 28781, 3198, 3123, 21631, 28747]
428
+
429
+ # Coding Mode
430
+ tokens = tokenizer("Code User: Implement quicksort using C++<|end_of_turn|>Code Assistant:").input_ids
431
+ assert tokens == [1, 7596, 1247, 28747, 26256, 2936, 7653, 1413, 334, 1680, 32000, 7596, 21631, 28747]
432
+ ```
433
+
434
+
435
+ ## License
436
+ The dataset, model and online demo is a research preview intended for non-commercial use only, subject to the data distillation [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
437
+
438
+
439
+ ## Acknowledgment
440
+ We would like to thank Wei-Lin Chiang from Berkeley for detailed feedback of the blog and the projects. We would like to thank the [LMSYS Organization](https://lmsys.org/) for their support of [lmsys-chat-1M](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) dataset, evaluation and online demo. We would like to thank the open source community for their efforts in providing the datasets and base models we used to develope the project, including but not limited to Anthropic, Llama, Mistral, Hugging Face H4, LMSYS, OpenChat, OpenBMB, Flan and ShareGPT.
441
+
442
+ ## Citation
443
+ ```
444
+ @misc{starling2023,
445
+ title = {Starling-7B: Improving LLM Helpfulness & Harmlessness with RLAIF},
446
+ url = {},
447
+ author = {Zhu, Banghua and Frick, Evan and Wu, Tianhao and Zhu, Hanlin and Jiao, Jiantao},
448
+ month = {November},
449
+ year = {2023}
450
+ }
451
+ ```