TheBloke commited on
Commit
456c05d
1 Parent(s): 2ff22a1

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +492 -0
README.md ADDED
@@ -0,0 +1,492 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: SanjiWatsuki/Silicon-Maid-7B
3
+ inference: false
4
+ language:
5
+ - en
6
+ license: cc-by-4.0
7
+ model_creator: Sanji Watsuki
8
+ model_name: Silicon Maid 7B
9
+ model_type: mistral
10
+ prompt_template: 'Below is an instruction that describes a task. Write a response
11
+ that appropriately completes the request.
12
+
13
+
14
+ ### Instruction:
15
+
16
+ {prompt}
17
+
18
+
19
+ ### Response:
20
+
21
+ '
22
+ quantized_by: TheBloke
23
+ tags:
24
+ - merge
25
+ - not-for-all-audiences
26
+ - nsfw
27
+ ---
28
+ <!-- markdownlint-disable MD041 -->
29
+
30
+ <!-- header start -->
31
+ <!-- 200823 -->
32
+ <div style="width: auto; margin-left: auto; margin-right: auto">
33
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
34
+ </div>
35
+ <div style="display: flex; justify-content: space-between; width: 100%;">
36
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
37
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
38
+ </div>
39
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
40
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
41
+ </div>
42
+ </div>
43
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
44
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
45
+ <!-- header end -->
46
+
47
+ # Silicon Maid 7B - GPTQ
48
+ - Model creator: [Sanji Watsuki](https://huggingface.co/SanjiWatsuki)
49
+ - Original model: [Silicon Maid 7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B)
50
+
51
+ <!-- description start -->
52
+ # Description
53
+
54
+ This repo contains GPTQ model files for [Sanji Watsuki's Silicon Maid 7B](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B).
55
+
56
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
57
+
58
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
59
+
60
+ <!-- description end -->
61
+ <!-- repositories-available start -->
62
+ ## Repositories available
63
+
64
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Silicon-Maid-7B-AWQ)
65
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Silicon-Maid-7B-GPTQ)
66
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Silicon-Maid-7B-GGUF)
67
+ * [Sanji Watsuki's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B)
68
+ <!-- repositories-available end -->
69
+
70
+ <!-- prompt-template start -->
71
+ ## Prompt template: Alpaca
72
+
73
+ ```
74
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
75
+
76
+ ### Instruction:
77
+ {prompt}
78
+
79
+ ### Response:
80
+
81
+ ```
82
+
83
+ <!-- prompt-template end -->
84
+
85
+
86
+
87
+ <!-- README_GPTQ.md-compatible clients start -->
88
+ ## Known compatible clients / servers
89
+
90
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
91
+
92
+ These GPTQ models are known to work in the following inference servers/webuis.
93
+
94
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
95
+ - [KoboldAI United](https://github.com/henk717/koboldai)
96
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
97
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
98
+
99
+ This may not be a complete list; if you know of others, please let me know!
100
+ <!-- README_GPTQ.md-compatible clients end -->
101
+
102
+ <!-- README_GPTQ.md-provided-files start -->
103
+ ## Provided files, and GPTQ parameters
104
+
105
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
106
+
107
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
108
+
109
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
110
+
111
+ <details>
112
+ <summary>Explanation of GPTQ parameters</summary>
113
+
114
+ - Bits: The bit size of the quantised model.
115
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
116
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
117
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
118
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
119
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
120
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
121
+
122
+ </details>
123
+
124
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
125
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
126
+ | [main](https://huggingface.co/TheBloke/Silicon-Maid-7B-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.16 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
127
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Silicon-Maid-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.57 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
128
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Silicon-Maid-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.52 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
129
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Silicon-Maid-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.68 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
130
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/Silicon-Maid-7B-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 8.17 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
131
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Silicon-Maid-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.29 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
132
+
133
+ <!-- README_GPTQ.md-provided-files end -->
134
+
135
+ <!-- README_GPTQ.md-download-from-branches start -->
136
+ ## How to download, including from branches
137
+
138
+ ### In text-generation-webui
139
+
140
+ To download from the `main` branch, enter `TheBloke/Silicon-Maid-7B-GPTQ` in the "Download model" box.
141
+
142
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Silicon-Maid-7B-GPTQ:gptq-4bit-32g-actorder_True`
143
+
144
+ ### From the command line
145
+
146
+ I recommend using the `huggingface-hub` Python library:
147
+
148
+ ```shell
149
+ pip3 install huggingface-hub
150
+ ```
151
+
152
+ To download the `main` branch to a folder called `Silicon-Maid-7B-GPTQ`:
153
+
154
+ ```shell
155
+ mkdir Silicon-Maid-7B-GPTQ
156
+ huggingface-cli download TheBloke/Silicon-Maid-7B-GPTQ --local-dir Silicon-Maid-7B-GPTQ --local-dir-use-symlinks False
157
+ ```
158
+
159
+ To download from a different branch, add the `--revision` parameter:
160
+
161
+ ```shell
162
+ mkdir Silicon-Maid-7B-GPTQ
163
+ huggingface-cli download TheBloke/Silicon-Maid-7B-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir Silicon-Maid-7B-GPTQ --local-dir-use-symlinks False
164
+ ```
165
+
166
+ <details>
167
+ <summary>More advanced huggingface-cli download usage</summary>
168
+
169
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
170
+
171
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
172
+
173
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
174
+
175
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
176
+
177
+ ```shell
178
+ pip3 install hf_transfer
179
+ ```
180
+
181
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
182
+
183
+ ```shell
184
+ mkdir Silicon-Maid-7B-GPTQ
185
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Silicon-Maid-7B-GPTQ --local-dir Silicon-Maid-7B-GPTQ --local-dir-use-symlinks False
186
+ ```
187
+
188
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
189
+ </details>
190
+
191
+ ### With `git` (**not** recommended)
192
+
193
+ To clone a specific branch with `git`, use a command like this:
194
+
195
+ ```shell
196
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Silicon-Maid-7B-GPTQ
197
+ ```
198
+
199
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
200
+
201
+ <!-- README_GPTQ.md-download-from-branches end -->
202
+ <!-- README_GPTQ.md-text-generation-webui start -->
203
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
204
+
205
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
206
+
207
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
208
+
209
+ 1. Click the **Model tab**.
210
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Silicon-Maid-7B-GPTQ`.
211
+
212
+ - To download from a specific branch, enter for example `TheBloke/Silicon-Maid-7B-GPTQ:gptq-4bit-32g-actorder_True`
213
+ - see Provided Files above for the list of branches for each option.
214
+
215
+ 3. Click **Download**.
216
+ 4. The model will start downloading. Once it's finished it will say "Done".
217
+ 5. In the top left, click the refresh icon next to **Model**.
218
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Silicon-Maid-7B-GPTQ`
219
+ 7. The model will automatically load, and is now ready for use!
220
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
221
+
222
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
223
+
224
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
225
+
226
+ <!-- README_GPTQ.md-text-generation-webui end -->
227
+
228
+ <!-- README_GPTQ.md-use-from-tgi start -->
229
+ ## Serving this model from Text Generation Inference (TGI)
230
+
231
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
232
+
233
+ Example Docker parameters:
234
+
235
+ ```shell
236
+ --model-id TheBloke/Silicon-Maid-7B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
237
+ ```
238
+
239
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
240
+
241
+ ```shell
242
+ pip3 install huggingface-hub
243
+ ```
244
+
245
+ ```python
246
+ from huggingface_hub import InferenceClient
247
+
248
+ endpoint_url = "https://your-endpoint-url-here"
249
+
250
+ prompt = "Tell me about AI"
251
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
252
+
253
+ ### Instruction:
254
+ {prompt}
255
+
256
+ ### Response:
257
+ '''
258
+
259
+ client = InferenceClient(endpoint_url)
260
+ response = client.text_generation(
261
+ prompt_template,
262
+ max_new_tokens=128,
263
+ do_sample=True,
264
+ temperature=0.7,
265
+ top_p=0.95,
266
+ top_k=40,
267
+ repetition_penalty=1.1
268
+ )
269
+
270
+ print(f"Model output: {response}")
271
+ ```
272
+ <!-- README_GPTQ.md-use-from-tgi end -->
273
+ <!-- README_GPTQ.md-use-from-python start -->
274
+ ## Python code example: inference from this GPTQ model
275
+
276
+ ### Install the necessary packages
277
+
278
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
279
+
280
+ ```shell
281
+ pip3 install --upgrade transformers optimum
282
+ # If using PyTorch 2.1 + CUDA 12.x:
283
+ pip3 install --upgrade auto-gptq
284
+ # or, if using PyTorch 2.1 + CUDA 11.x:
285
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
286
+ ```
287
+
288
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
289
+
290
+ ```shell
291
+ pip3 uninstall -y auto-gptq
292
+ git clone https://github.com/PanQiWei/AutoGPTQ
293
+ cd AutoGPTQ
294
+ git checkout v0.5.1
295
+ pip3 install .
296
+ ```
297
+
298
+ ### Example Python code
299
+
300
+ ```python
301
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
302
+
303
+ model_name_or_path = "TheBloke/Silicon-Maid-7B-GPTQ"
304
+ # To use a different branch, change revision
305
+ # For example: revision="gptq-4bit-32g-actorder_True"
306
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
307
+ device_map="auto",
308
+ trust_remote_code=False,
309
+ revision="main")
310
+
311
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
312
+
313
+ prompt = "Write a story about llamas"
314
+ system_message = "You are a story writing assistant"
315
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
316
+
317
+ ### Instruction:
318
+ {prompt}
319
+
320
+ ### Response:
321
+ '''
322
+
323
+ print("\n\n*** Generate:")
324
+
325
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
326
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
327
+ print(tokenizer.decode(output[0]))
328
+
329
+ # Inference can also be done using transformers' pipeline
330
+
331
+ print("*** Pipeline:")
332
+ pipe = pipeline(
333
+ "text-generation",
334
+ model=model,
335
+ tokenizer=tokenizer,
336
+ max_new_tokens=512,
337
+ do_sample=True,
338
+ temperature=0.7,
339
+ top_p=0.95,
340
+ top_k=40,
341
+ repetition_penalty=1.1
342
+ )
343
+
344
+ print(pipe(prompt_template)[0]['generated_text'])
345
+ ```
346
+ <!-- README_GPTQ.md-use-from-python end -->
347
+
348
+ <!-- README_GPTQ.md-compatibility start -->
349
+ ## Compatibility
350
+
351
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
352
+
353
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility.
354
+
355
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
356
+ <!-- README_GPTQ.md-compatibility end -->
357
+
358
+ <!-- footer start -->
359
+ <!-- 200823 -->
360
+ ## Discord
361
+
362
+ For further support, and discussions on these models and AI in general, join us at:
363
+
364
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
365
+
366
+ ## Thanks, and how to contribute
367
+
368
+ Thanks to the [chirper.ai](https://chirper.ai) team!
369
+
370
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
371
+
372
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
373
+
374
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
375
+
376
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
377
+
378
+ * Patreon: https://patreon.com/TheBlokeAI
379
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
380
+
381
+ **Special thanks to**: Aemon Algiz.
382
+
383
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
384
+
385
+
386
+ Thank you to all my generous patrons and donaters!
387
+
388
+ And thank you again to a16z for their generous grant.
389
+
390
+ <!-- footer end -->
391
+
392
+ # Original model card: Sanji Watsuki's Silicon Maid 7B
393
+
394
+
395
+ <div style="display: flex; justify-content: center; align-items: center">
396
+ <img src="https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B/resolve/main/assets/cybermaid.png">
397
+ </div
398
+ >
399
+
400
+ <p align="center">
401
+ <big><b>Top 1 RP Performer on MT-bench 🤪</b
402
+ ></big>
403
+ </p>
404
+
405
+ <p align="center">
406
+ <strong>Next Gen Silicon-Based RP Maid</strong>
407
+ </p>
408
+
409
+ ## WTF is This?
410
+
411
+ Silicon-Maid-7B is another model targeted at being both strong at RP **and** being a smart cookie that can follow character cards very well. As of right now, Silicon-Maid-7B outscores both of my previous 7B RP models in my RP benchmark and I have been impressed by this model's creativity. It is suitable for RP/ERP and general use.
412
+
413
+ It's built on [xDAN-AI/xDAN-L1-Chat-RL-v1](https://huggingface.co/xDAN-AI/xDAN-L1-Chat-RL-v1), a 7B model which scores unusually high on MT-Bench, and chargoddard/loyal-piano-m7, an Alpaca format 7B model with surprisingly creative outputs. I was excited to see this model for two main reasons:
414
+ * MT-Bench normally correlates well with real world model quality
415
+ * It was an Alpaca prompt model with high benches which meant I could try swapping out my Marcoroni frankenmerge used in my previous model.
416
+
417
+ **MT-Bench Average Turn**
418
+ | model | score | size
419
+ |--------------------|-----------|--------
420
+ | gpt-4 | 8.99 | -
421
+ | *xDAN-L1-Chat-RL-v1* | 8.24^1 | 7b
422
+ | Starling-7B | 8.09 | 7b
423
+ | Claude-2 | 8.06 | -
424
+ | **Silicon-Maid** | **7.96** | **7b**
425
+ | *Loyal-Macaroni-Maid*| 7.95 | 7b
426
+ | gpt-3.5-turbo | 7.94 | 20b?
427
+ | Claude-1 | 7.90 | -
428
+ | OpenChat-3.5 | 7.81 | -
429
+ | vicuna-33b-v1.3 | 7.12 | 33b
430
+ | wizardlm-30b | 7.01 | 30b
431
+ | Llama-2-70b-chat | 6.86 | 70b
432
+
433
+ ^1 xDAN's testing placed it 8.35 - this number is from my independent MT-Bench run.
434
+
435
+ <img src="https://huggingface.co/SanjiWatsuki/Silicon-Maid-7B/resolve/main/assets/fig-silicon-loyal.png">
436
+
437
+ It's unclear to me if xDAN-L1-Chat-RL-v1 is overtly benchmaxxing but it seemed like a solid 7B from my limited testing (although nothing that screams 2nd best model behind GPT-4). Amusingly, the model lost a lot of Reasoning and Coding skills in the merger. This was a much greater MT-Bench dropoff than I expected, perhaps suggesting the Math/Reasoning ability in the original model was rather dense and susceptible to being lost to a DARE TIE merger?
438
+
439
+ Besides that, the merger is almost identical to the Loyal-Macaroni-Maid merger with a new base "smart cookie" model. If you liked any of my previous RP models, give this one a shot and let me know in the Community tab what you think!
440
+
441
+ ### The Sauce
442
+
443
+ ```
444
+ models: # Top-Loyal-Bruins-Maid-DARE-7B
445
+ - model: mistralai/Mistral-7B-v0.1
446
+ # no parameters necessary for base model
447
+ - model: xDAN-AI/xDAN-L1-Chat-RL-v1
448
+ parameters:
449
+ weight: 0.4
450
+ density: 0.8
451
+ - model: chargoddard/loyal-piano-m7
452
+ parameters:
453
+ weight: 0.3
454
+ density: 0.8
455
+ - model: Undi95/Toppy-M-7B
456
+ parameters:
457
+ weight: 0.2
458
+ density: 0.4
459
+ - model: NeverSleep/Noromaid-7b-v0.2
460
+ parameters:
461
+ weight: 0.2
462
+ density: 0.4
463
+ - model: athirdpath/NSFW_DPO_vmgb-7b
464
+ parameters:
465
+ weight: 0.2
466
+ density: 0.4
467
+ merge_method: dare_ties
468
+ base_model: mistralai/Mistral-7B-v0.1
469
+ parameters:
470
+ int8_mask: true
471
+ dtype: bfloat16
472
+ ```
473
+
474
+ For more information about why I use this merger, see the [Loyal-Macaroni-Maid repo](https://huggingface.co/SanjiWatsuki/Loyal-Macaroni-Maid-7B#the-sauce-all-you-need-is-dare)
475
+
476
+ ### Prompt Template (Alpaca)
477
+ I found the best SillyTavern results from using the Noromaid template but please try other templates! Let me know if you find anything good.
478
+
479
+ SillyTavern config files: [Context](https://files.catbox.moe/ifmhai.json), [Instruct](https://files.catbox.moe/ttw1l9.json).
480
+
481
+ Additionally, here is my highly recommended [Text Completion preset](https://huggingface.co/SanjiWatsuki/Loyal-Macaroni-Maid-7B/blob/main/Characters/MinP.json). You can tweak this by adjusting temperature up or dropping min p to boost creativity or raise min p to increase stability. You shouldn't need to touch anything else!
482
+
483
+ ```
484
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
485
+
486
+ ### Instruction:
487
+ {prompt}
488
+
489
+ ### Response:
490
+ ```
491
+
492
+