TheBloke commited on
Commit
07757a2
1 Parent(s): b03c76d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -16
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  datasets:
3
  - PygmalionAI/PIPPA
4
  - Open-Orca/OpenOrca
@@ -10,10 +11,37 @@ language:
10
  - en
11
  license: llama2
12
  model_creator: PygmalionAI
13
- model_link: https://huggingface.co/PygmalionAI/pygmalion-2-7b
14
  model_name: Pygmalion 2 7B
15
  model_type: llama
16
  pipeline_tag: text-generation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  quantized_by: TheBloke
18
  tags:
19
  - text generation
@@ -53,6 +81,7 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
53
  <!-- repositories-available start -->
54
  ## Repositories available
55
 
 
56
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ)
57
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF)
58
  * [PygmalionAI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/PygmalionAI/pygmalion-2-7b)
@@ -78,6 +107,7 @@ You shall reply to the user while staying in character, and generate long respon
78
 
79
  <!-- prompt-template end -->
80
 
 
81
  <!-- README_GPTQ.md-provided-files start -->
82
  ## Provided files and GPTQ parameters
83
 
@@ -102,22 +132,22 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
102
 
103
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
104
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
105
- | [main](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
106
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
107
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
108
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
109
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
110
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
111
 
112
  <!-- README_GPTQ.md-provided-files end -->
113
 
114
  <!-- README_GPTQ.md-download-from-branches start -->
115
  ## How to download from branches
116
 
117
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Pygmalion-2-7B-GPTQ:gptq-4bit-32g-actorder_True`
118
  - With Git, you can clone a branch with:
119
  ```
120
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ
121
  ```
122
  - In Python Transformers code, the branch is the `revision` parameter; see below.
123
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -130,7 +160,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
130
 
131
  1. Click the **Model tab**.
132
  2. Under **Download custom model or LoRA**, enter `TheBloke/Pygmalion-2-7B-GPTQ`.
133
- - To download from a specific branch, enter for example `TheBloke/Pygmalion-2-7B-GPTQ:gptq-4bit-32g-actorder_True`
134
  - see Provided Files above for the list of branches for each option.
135
  3. Click **Download**.
136
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -178,10 +208,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
178
 
179
  model_name_or_path = "TheBloke/Pygmalion-2-7B-GPTQ"
180
  # To use a different branch, change revision
181
- # For example: revision="gptq-4bit-32g-actorder_True"
182
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
183
- torch_dtype=torch.float16,
184
  device_map="auto",
 
185
  revision="main")
186
 
187
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -197,7 +227,7 @@ You shall reply to the user while staying in character, and generate long respon
197
  print("\n\n*** Generate:")
198
 
199
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
200
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
201
  print(tokenizer.decode(output[0]))
202
 
203
  # Inference can also be done using transformers' pipeline
@@ -208,9 +238,11 @@ pipe = pipeline(
208
  model=model,
209
  tokenizer=tokenizer,
210
  max_new_tokens=512,
 
211
  temperature=0.7,
212
  top_p=0.95,
213
- repetition_penalty=1.15
 
214
  )
215
 
216
  print(pipe(prompt_template)[0]['generated_text'])
@@ -235,10 +267,12 @@ For further support, and discussions on these models and AI in general, join us
235
 
236
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
237
 
238
- ## Thanks, and how to contribute.
239
 
240
  Thanks to the [chirper.ai](https://chirper.ai) team!
241
 
 
 
242
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
243
 
244
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -250,7 +284,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
250
 
251
  **Special thanks to**: Aemon Algiz.
252
 
253
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
254
 
255
 
256
  Thank you to all my generous patrons and donaters!
@@ -309,3 +343,8 @@ The intended use-case for this model is fictional writing for entertainment purp
309
  As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that
310
  are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.
311
  Outputs might often be factually wrong or misleading.
 
 
 
 
 
 
1
  ---
2
+ base_model: https://huggingface.co/PygmalionAI/pygmalion-2-7b
3
  datasets:
4
  - PygmalionAI/PIPPA
5
  - Open-Orca/OpenOrca
 
11
  - en
12
  license: llama2
13
  model_creator: PygmalionAI
 
14
  model_name: Pygmalion 2 7B
15
  model_type: llama
16
  pipeline_tag: text-generation
17
+ prompt_template: 'The model has been trained on prompts using three different roles,
18
+ which are denoted by the following tokens: `<|system|>`, `<|user|>` and `<|model|>`.
19
+
20
+
21
+ The `<|system|>` prompt can be used to inject out-of-channel information behind
22
+ the scenes, while the `<|user|>` prompt should be used to indicate user input.
23
+
24
+ The `<|model|>` token should then be used to indicate that the model should generate
25
+ a response. These tokens can happen multiple times and be chained up to form a conversation
26
+ history.
27
+
28
+
29
+ The system prompt has been designed to allow the model to "enter" various modes
30
+ and dictate the reply length. Here''s an example:
31
+
32
+
33
+ ```
34
+
35
+ <|system|>Enter RP mode. Pretend to be {{char}} whose persona follows:
36
+
37
+ {{persona}}
38
+
39
+
40
+ You shall reply to the user while staying in character, and generate long responses.
41
+
42
+ ```
43
+
44
+ '
45
  quantized_by: TheBloke
46
  tags:
47
  - text generation
 
81
  <!-- repositories-available start -->
82
  ## Repositories available
83
 
84
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Pygmalion-2-7B-AWQ)
85
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ)
86
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Pygmalion-2-7B-GGUF)
87
  * [PygmalionAI's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/PygmalionAI/pygmalion-2-7b)
 
107
 
108
  <!-- prompt-template end -->
109
 
110
+
111
  <!-- README_GPTQ.md-provided-files start -->
112
  ## Provided files and GPTQ parameters
113
 
 
132
 
133
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
134
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
135
+ | [main](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, without Act Order and group size 128g. |
136
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
137
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
138
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
139
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
140
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
141
 
142
  <!-- README_GPTQ.md-provided-files end -->
143
 
144
  <!-- README_GPTQ.md-download-from-branches start -->
145
  ## How to download from branches
146
 
147
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Pygmalion-2-7B-GPTQ:main`
148
  - With Git, you can clone a branch with:
149
  ```
150
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/Pygmalion-2-7B-GPTQ
151
  ```
152
  - In Python Transformers code, the branch is the `revision` parameter; see below.
153
  <!-- README_GPTQ.md-download-from-branches end -->
 
160
 
161
  1. Click the **Model tab**.
162
  2. Under **Download custom model or LoRA**, enter `TheBloke/Pygmalion-2-7B-GPTQ`.
163
+ - To download from a specific branch, enter for example `TheBloke/Pygmalion-2-7B-GPTQ:main`
164
  - see Provided Files above for the list of branches for each option.
165
  3. Click **Download**.
166
  4. The model will start downloading. Once it's finished it will say "Done".
 
208
 
209
  model_name_or_path = "TheBloke/Pygmalion-2-7B-GPTQ"
210
  # To use a different branch, change revision
211
+ # For example: revision="main"
212
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
213
  device_map="auto",
214
+ trust_remote_code=False,
215
  revision="main")
216
 
217
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
227
  print("\n\n*** Generate:")
228
 
229
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
230
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
231
  print(tokenizer.decode(output[0]))
232
 
233
  # Inference can also be done using transformers' pipeline
 
238
  model=model,
239
  tokenizer=tokenizer,
240
  max_new_tokens=512,
241
+ do_sample=True,
242
  temperature=0.7,
243
  top_p=0.95,
244
+ top_k=40,
245
+ repetition_penalty=1.1
246
  )
247
 
248
  print(pipe(prompt_template)[0]['generated_text'])
 
267
 
268
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
269
 
270
+ ## Thanks, and how to contribute
271
 
272
  Thanks to the [chirper.ai](https://chirper.ai) team!
273
 
274
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
275
+
276
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
277
 
278
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
284
 
285
  **Special thanks to**: Aemon Algiz.
286
 
287
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
288
 
289
 
290
  Thank you to all my generous patrons and donaters!
 
343
  As such, it was **not** fine-tuned to be safe and harmless: the base model _and_ this fine-tune have been trained on data known to contain profanity and texts that
344
  are lewd or otherwise offensive. It may produce socially unacceptable or undesirable text, even if the prompt itself does not include anything explicitly offensive.
345
  Outputs might often be factually wrong or misleading.
346
+
347
+ ## Acknowledgements
348
+ We would like to thank [SpicyChat](https://spicychat.ai/) for sponsoring the training for this model.
349
+
350
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)