File size: 16,637 Bytes
aaebb35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
---
inference: false
license: llama2
model-index:
- name: Phind-CodeLlama-34B-v1
  results:
  - dataset:
      name: HumanEval
      type: openai_humaneval
    metrics:
    - name: pass@1
      type: pass@1
      value: 67.6%
      verified: false
    task:
      type: text-generation
model_creator: Phind
model_link: https://huggingface.co/Phind/Phind-CodeLlama-34B-v1
model_name: Phind CodeLlama 34B v1
model_type: llama
quantized_by: TheBloke
tags:
- code llama
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Phind CodeLlama 34B v1 - GGUF
- Model creator: [Phind](https://huggingface.co/Phind)
- Original model: [Phind CodeLlama 34B v1](https://huggingface.co/Phind/Phind-CodeLlama-34B-v1)

## Description

This repo contains GGUF format model files for [Phind's Phind CodeLlama 34B v1](https://huggingface.co/Phind/Phind-CodeLlama-34B-v1).

<!-- README_GGUF.md-about-gguf start -->
### About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.

As of August 25th, here is a list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp)
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI. Supports GGUF with GPU acceleration via the ctransformers backend - llama-cpp-python backend should work soon too.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), now supports GGUF as of release 1.41! A powerful GGML web UI, with full GPU accel. Especially good for story telling.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), should now work, choose the `c_transformers` backend. A great web UI with many interesting features. Supports CUDA GPU acceleration.
* [ctransformers](https://github.com/marella/ctransformers), now supports GGUF as of version 0.2.24! A Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), supports GGUF as of version 0.1.79. A Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), added GGUF support on August 22nd. Candle is a Rust ML framework with a focus on performance, including GPU support, and ease of use.

The clients and libraries below are expecting to add GGUF support shortly:
* [LM Studio](https://lmstudio.ai/), should be updated by end August 25th.
<!-- README_GGUF.md-about-gguf end -->

<!-- repositories-available start -->
## Repositories available

* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGML)
* [Phind's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Phind/Phind-CodeLlama-34B-v1)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Plain-with-newline

```
{prompt} \n
```

<!-- prompt-template end -->
<!-- compatibility_gguf start -->
## Compatibility

These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)

As of August 24th 2023 they are now compatible with KoboldCpp, release 1.41 and later.

They are are not yet compatible with any other third-party UIS, libraries or utilities but this is expected to change very soon.

## Explanation of quantisation methods
<details>
  <summary>Click to see details</summary>

The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->

<!-- README_GGUF.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [phind-codellama-34b-v1.Q2_K.gguf](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF/blob/main/phind-codellama-34b-v1.Q2_K.gguf) | Q2_K | 2 | 14.21 GB| 16.71 GB | smallest, significant quality loss - not recommended for most purposes |
| [phind-codellama-34b-v1.Q3_K_S.gguf](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF/blob/main/phind-codellama-34b-v1.Q3_K_S.gguf) | Q3_K_S | 3 | 14.61 GB| 17.11 GB | very small, high quality loss |
| [phind-codellama-34b-v1.Q3_K_M.gguf](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF/blob/main/phind-codellama-34b-v1.Q3_K_M.gguf) | Q3_K_M | 3 | 16.28 GB| 18.78 GB | very small, high quality loss |
| [phind-codellama-34b-v1.Q3_K_L.gguf](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF/blob/main/phind-codellama-34b-v1.Q3_K_L.gguf) | Q3_K_L | 3 | 17.77 GB| 20.27 GB | small, substantial quality loss |
| [phind-codellama-34b-v1.Q4_K_S.gguf](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF/blob/main/phind-codellama-34b-v1.Q4_K_S.gguf) | Q4_K_S | 4 | 19.15 GB| 21.65 GB | small, greater quality loss |
| [phind-codellama-34b-v1.Q4_K_M.gguf](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF/blob/main/phind-codellama-34b-v1.Q4_K_M.gguf) | Q4_K_M | 4 | 20.22 GB| 22.72 GB | medium, balanced quality - recommended |
| [phind-codellama-34b-v1.Q5_K_S.gguf](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF/blob/main/phind-codellama-34b-v1.Q5_K_S.gguf) | Q5_K_S | 5 | 23.24 GB| 25.74 GB | large, low quality loss - recommended |
| [phind-codellama-34b-v1.Q5_K_M.gguf](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF/blob/main/phind-codellama-34b-v1.Q5_K_M.gguf) | Q5_K_M | 5 | 23.84 GB| 26.34 GB | large, very low quality loss - recommended |
| [phind-codellama-34b-v1.Q6_K.gguf](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF/blob/main/phind-codellama-34b-v1.Q6_K.gguf) | Q6_K | 6 | 27.68 GB| 30.18 GB | very large, extremely low quality loss |
| [phind-codellama-34b-v1.Q8_0.gguf](https://huggingface.co/TheBloke/Phind-CodeLlama-34B-v1-GGUF/blob/main/phind-codellama-34b-v1.Q8_0.gguf) | Q8_0 | 8 | 35.79 GB| 38.29 GB | very large, extremely low quality loss - not recommended |

**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
<!-- README_GGUF.md-provided-files end -->

<!-- README_GGUF.md-how-to-run start -->
## How to run in `llama.cpp`

Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.

For compatibility with older versions of llama.cpp, or for use with third-party clients and libaries, please use GGML files instead.

```
./main -t 10 -ngl 32 -m phind-codellama-34b-v1.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.

Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run in `text-generation-webui`

Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
<!-- README_GGUF.md-how-to-run end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Kacper Wikieł, knownsqashed, Leonard Tan, Asp the Wyvern, Daniel P. Andersen, Luke Pendergrass, Stanislav Ovsiannikov, RoA, Dave, Ai Maven, Kalila, Will Dee, Imad Khwaja, Nitin Borwankar, Joseph William Delisle, Tony Hughes, Cory Kujawski, Rishabh Srivastava, Russ Johnson, Stephen Murray, Lone Striker, Johann-Peter Hartmann, Elle, J, Deep Realms, SuperWojo, Raven Klaugh, Sebastain Graf, ReadyPlayerEmma, Alps Aficionado, Mano Prime, Derek Yates, Gabriel Puliatti, Mesiah Bishop, Magnesian, Sean Connelly, biorpg, Iucharbius, Olakabola, Fen Risland, Space Cruiser, theTransient, Illia Dulskyi, Thomas Belote, Spencer Kim, Pieter, John Detwiler, Fred von Graf, Michael Davis, Swaroop Kallakuri, subjectnull, Clay Pascal, Subspace Studios, Chris Smitley, Enrico Ros, usrbinkat, Steven Wood, alfie_i, David Ziegler, Willem Michiel, Matthew Berman, Andrey, Pyrater, Jeffrey Morgan, vamX, LangChain4j, Luke @flexchar, Trenton Dambrowitz, Pierre Kircher, Alex, Sam, James Bentley, Edmond Seymore, Eugene Pentland, Pedro Madruga, Rainer Wilmers, Dan Guido, Nathan LeClaire, Spiking Neurons AB, Talal Aujan, zynix, Artur Olbinski, Michael Levine, 阿明, K, John Villwock, Nikolai Manek, Femi Adebogun, senxiiz, Deo Leter, NimbleBox.ai, Viktor Bowallius, Geoffrey Montalvo, Mandus, Ajan Kanaga, ya boyyy, Jonathan Leane, webtim, Brandon Frisco, danny, Alexandros Triantafyllidis, Gabriel Tamborski, Randy H, terasurfer, Vadim, Junyu Yang, Vitor Caleffi, Chadd, transmissions 11


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

<!-- original-model-card start -->
# Original model card: Phind's Phind CodeLlama 34B v1


# **Phind-CodeLlama-34B-v1**
We've fine-tuned CodeLlama-34B and CodeLlama-34B-Python on an internal Phind dataset that achieve 67.6% and 69.5% pass@1 on HumanEval, respectively. GPT-4 achieves 67%. We've applied OpenAI's decontamination methodology to our dataset to ensure result validity.

More details can be found on our [blog post](https://www.phind.com/blog/code-llama-beats-gpt4).

## Model Details
This model is fine-tuned from CodeLlama-34B and achieves 67.6% pass@1 on HumanEval.

## Dataset Details
We fined-tuned on a proprietary dataset of ~80k high quality programming problems and solutions. This dataset consists of instruction-answer pairs instead of code completion examples, making it structurally different from HumanEval. The Phind models were trained for 2 epochs, for a total of ~160k examples shown. LoRA was not used -- both models are a native finetune. We used DeepSpeed ZeRO 3 and Flash Attention 2 to train these models in three hours on 32 A100-80GB GPUs. We used a sequence length of 4096 tokens.

## How to Get Started with the Model

Make sure to install Transformers from the main git branch:

```bash
pip install git+https://github.com/huggingface/transformers.git
```

## How to Prompt the Model
**Please note that this model is somewhat instruction-tuned, but not chat-tuned.**

Do not try to use the Llama chat markup with this model. Instead, simply tell it what you want and add "\n: " at the end of your task.

For example: 

```
Write me a linked list implementation: \n
```

## How to reproduce HumanEval Results

To reproduce our results:

```python

from transformers import AutoTokenizer, LlamaForCausalLM
from human_eval.data import write_jsonl, read_problems
from tqdm import tqdm

# initialize the model

model_path = "Phind/Phind-CodeLlama-34B-v1"
model = LlamaForCausalLM.from_pretrained(model_path, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)

# HumanEval helper

def generate_one_completion(prompt: str):
    tokenizer.pad_token = tokenizer.eos_token
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)

    # Generate
    generate_ids = model.generate(inputs.input_ids.to("cuda"), max_new_tokens=256, do_sample=True, top_p=0.75, top_k=40, temperature=0.1)
    completion = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    completion = completion.replace(prompt, "").split("\n\n\n")[0]

    return completion

# perform HumanEval
problems = read_problems()

num_samples_per_task = 1
samples = [
    dict(task_id=task_id, completion=generate_one_completion(problems[task_id]["prompt"]))
    for task_id in tqdm(problems)
    for _ in range(num_samples_per_task)
]
write_jsonl("samples.jsonl", samples)

# run `evaluate_functional_correctness samples.jsonl` in your HumanEval code sandbox
```

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->
This model has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.


## Training details

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

- **Hardware Type:** 32x A100-80GB
- **Hours used:** 90 GPU-hours
- **Cloud Provider:** AWS
- **Compute Region:** us-east-1

<!-- original-model-card end -->