TheBloke commited on
Commit
254412b
1 Parent(s): d5678e9

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -64
README.md CHANGED
@@ -2,7 +2,7 @@
2
  inference: false
3
  language:
4
  - en
5
- license: other
6
  model_creator: NousResearch
7
  model_link: https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b
8
  model_name: Nous Hermes Llama 2 7B
@@ -36,118 +36,156 @@ tags:
36
  - Model creator: [NousResearch](https://huggingface.co/NousResearch)
37
  - Original model: [Nous Hermes Llama 2 7B](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b)
38
 
 
39
  ## Description
40
 
41
  This repo contains GPTQ model files for [NousResearch's Nous Hermes Llama 2 7B](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b).
42
 
43
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
44
 
 
 
45
  ## Repositories available
46
 
47
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ)
48
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GGML)
 
49
  * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b)
 
50
 
 
51
  ## Prompt template: Alpaca
52
 
53
  ```
54
  Below is an instruction that describes a task. Write a response that appropriately completes the request.
55
 
56
- ### Instruction: {prompt}
 
57
 
58
  ### Response:
 
59
  ```
60
 
61
- ## Provided files
 
 
 
62
 
63
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
64
 
65
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
66
 
67
- | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
68
- | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
69
- | [main](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/main) | 4 | 128 | False | 3.90 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
70
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
71
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
72
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
73
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | True | 7.01 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
74
- | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | False | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
75
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | True | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
76
- | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | True | 7.31 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
 
 
 
78
  ## How to download from branches
79
 
80
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Nous-Hermes-Llama-2-7B-GPTQ:gptq-4bit-32g-actorder_True`
81
  - With Git, you can clone a branch with:
82
  ```
83
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ`
84
  ```
85
  - In Python Transformers code, the branch is the `revision` parameter; see below.
86
-
 
87
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
88
 
89
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
90
 
91
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
92
 
93
  1. Click the **Model tab**.
94
  2. Under **Download custom model or LoRA**, enter `TheBloke/Nous-Hermes-Llama-2-7B-GPTQ`.
95
  - To download from a specific branch, enter for example `TheBloke/Nous-Hermes-Llama-2-7B-GPTQ:gptq-4bit-32g-actorder_True`
96
  - see Provided Files above for the list of branches for each option.
97
  3. Click **Download**.
98
- 4. The model will start downloading. Once it's finished it will say "Done"
99
  5. In the top left, click the refresh icon next to **Model**.
100
  6. In the **Model** dropdown, choose the model you just downloaded: `Nous-Hermes-Llama-2-7B-GPTQ`
101
  7. The model will automatically load, and is now ready for use!
102
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
103
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
104
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
105
 
 
106
  ## How to use this GPTQ model from Python code
107
 
108
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
 
 
 
 
 
 
 
 
 
109
 
110
- `GITHUB_ACTIONS=true pip install auto-gptq`
 
 
 
 
 
 
 
 
 
 
 
 
 
111
 
112
- Then try the following example code:
113
 
114
  ```python
115
- from transformers import AutoTokenizer, pipeline, logging
116
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
117
 
118
  model_name_or_path = "TheBloke/Nous-Hermes-Llama-2-7B-GPTQ"
119
- model_basename = "model"
120
-
121
- use_triton = False
 
 
 
122
 
123
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
124
 
125
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
126
- model_basename=model_basename,
127
- use_safetensors=True,
128
- trust_remote_code=False,
129
- device="cuda:0",
130
- use_triton=use_triton,
131
- quantize_config=None)
132
-
133
- """
134
- To download from a specific branch, use the revision parameter, as in this example:
135
-
136
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
137
- revision="gptq-4bit-32g-actorder_True",
138
- model_basename=model_basename,
139
- use_safetensors=True,
140
- trust_remote_code=False,
141
- device="cuda:0",
142
- quantize_config=None)
143
- """
144
-
145
  prompt = "Tell me about AI"
146
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
147
 
148
- ### Instruction: {prompt}
 
149
 
150
  ### Response:
 
151
  '''
152
 
153
  print("\n\n*** Generate:")
@@ -158,9 +196,6 @@ print(tokenizer.decode(output[0]))
158
 
159
  # Inference can also be done using transformers' pipeline
160
 
161
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
162
- logging.set_verbosity(logging.CRITICAL)
163
-
164
  print("*** Pipeline:")
165
  pipe = pipeline(
166
  "text-generation",
@@ -174,12 +209,17 @@ pipe = pipeline(
174
 
175
  print(pipe(prompt_template)[0]['generated_text'])
176
  ```
 
177
 
 
178
  ## Compatibility
179
 
180
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
181
 
182
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
183
 
184
  <!-- footer start -->
185
  <!-- 200823 -->
@@ -204,7 +244,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
204
 
205
  **Special thanks to**: Aemon Algiz.
206
 
207
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
208
 
209
 
210
  Thank you to all my generous patrons and donaters!
@@ -236,16 +276,16 @@ The model was trained almost entirely on synthetic GPT-4 outputs. Curating high
236
  This includes data from diverse sources such as GPTeacher, the general, roleplay v1&2, code instruct datasets, Nous Instruct & PDACTL (unpublished), and several others, detailed further below
237
 
238
  ## Collaborators
239
- The model fine-tuning and the datasets were a collaboration of efforts and resources between Teknium, Karan4D, Emozilla, Huemin Art, and Redmond AI.
240
-
241
  Special mention goes to @winglian for assisting in some of the training issues.
242
 
243
- Huge shoutout and acknowledgement is deserved for all the dataset creators who generously share their datasets openly.
244
 
245
  Among the contributors of datasets:
246
  - GPTeacher was made available by Teknium
247
  - Wizard LM by nlpxucan
248
- - Nous Research Instruct Dataset was provided by Karan4D and HueminArt.
249
  - GPT4-LLM and Unnatural Instructions were provided by Microsoft
250
  - Airoboros dataset by jondurbin
251
  - Camel-AI's domain expert datasets are from Camel-AI
@@ -265,7 +305,7 @@ The model follows the Alpaca prompt format:
265
 
266
  ```
267
 
268
- or
269
 
270
  ```
271
  ### Instruction:
@@ -277,20 +317,20 @@ or
277
  ### Response:
278
  <leave a newline blank for model to respond>
279
 
280
- ```
281
 
282
  ## Benchmark Results
283
  Coming soon
284
 
285
  ## Resources for Applied Use Cases:
286
- For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord
287
- For an example of a roleplaying discord chatbot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot
288
 
289
  LM Studio is a good choice for a chat interface that supports GGML versions (to come)
290
 
291
  ## Future Plans
292
- We plan to continue to iterate on both more high quality data, and new data filtering techniques to eliminate lower quality data going forward.
293
 
294
  ## Model Usage
295
  The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions.
296
-
 
2
  inference: false
3
  language:
4
  - en
5
+ license: llama2
6
  model_creator: NousResearch
7
  model_link: https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b
8
  model_name: Nous Hermes Llama 2 7B
 
36
  - Model creator: [NousResearch](https://huggingface.co/NousResearch)
37
  - Original model: [Nous Hermes Llama 2 7B](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b)
38
 
39
+ <!-- description start -->
40
  ## Description
41
 
42
  This repo contains GPTQ model files for [NousResearch's Nous Hermes Llama 2 7B](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b).
43
 
44
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
45
 
46
+ <!-- description end -->
47
+ <!-- repositories-available start -->
48
  ## Repositories available
49
 
50
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ)
51
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GGUF)
52
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GGML)
53
  * [NousResearch's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/NousResearch/Nous-Hermes-llama-2-7b)
54
+ <!-- repositories-available end -->
55
 
56
+ <!-- prompt-template start -->
57
  ## Prompt template: Alpaca
58
 
59
  ```
60
  Below is an instruction that describes a task. Write a response that appropriately completes the request.
61
 
62
+ ### Instruction:
63
+ {prompt}
64
 
65
  ### Response:
66
+
67
  ```
68
 
69
+ <!-- prompt-template end -->
70
+
71
+ <!-- README_GPTQ.md-provided-files start -->
72
+ ## Provided files and GPTQ parameters
73
 
74
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
75
 
76
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
77
 
78
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
79
+
80
+ <details>
81
+ <summary>Explanation of GPTQ parameters</summary>
82
+
83
+ - Bits: The bit size of the quantised model.
84
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
85
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
86
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
87
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
88
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
89
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
90
+
91
+ </details>
92
+
93
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
94
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
95
+ | [main](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
96
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
97
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
98
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
99
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
100
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
101
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
102
+ | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.31 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
103
 
104
+ <!-- README_GPTQ.md-provided-files end -->
105
+
106
+ <!-- README_GPTQ.md-download-from-branches start -->
107
  ## How to download from branches
108
 
109
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Nous-Hermes-Llama-2-7B-GPTQ:gptq-4bit-32g-actorder_True`
110
  - With Git, you can clone a branch with:
111
  ```
112
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Nous-Hermes-Llama-2-7B-GPTQ
113
  ```
114
  - In Python Transformers code, the branch is the `revision` parameter; see below.
115
+ <!-- README_GPTQ.md-download-from-branches end -->
116
+ <!-- README_GPTQ.md-text-generation-webui start -->
117
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
118
 
119
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
120
 
121
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
122
 
123
  1. Click the **Model tab**.
124
  2. Under **Download custom model or LoRA**, enter `TheBloke/Nous-Hermes-Llama-2-7B-GPTQ`.
125
  - To download from a specific branch, enter for example `TheBloke/Nous-Hermes-Llama-2-7B-GPTQ:gptq-4bit-32g-actorder_True`
126
  - see Provided Files above for the list of branches for each option.
127
  3. Click **Download**.
128
+ 4. The model will start downloading. Once it's finished it will say "Done".
129
  5. In the top left, click the refresh icon next to **Model**.
130
  6. In the **Model** dropdown, choose the model you just downloaded: `Nous-Hermes-Llama-2-7B-GPTQ`
131
  7. The model will automatically load, and is now ready for use!
132
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
133
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
134
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
135
+ <!-- README_GPTQ.md-text-generation-webui end -->
136
 
137
+ <!-- README_GPTQ.md-use-from-python start -->
138
  ## How to use this GPTQ model from Python code
139
 
140
+ ### Install the necessary packages
141
+
142
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
143
+
144
+ ```shell
145
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
146
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
147
+ ```
148
+
149
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
150
 
151
+ ```shell
152
+ pip3 uninstall -y auto-gptq
153
+ git clone https://github.com/PanQiWei/AutoGPTQ
154
+ cd AutoGPTQ
155
+ pip3 install .
156
+ ```
157
+
158
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
159
+
160
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
161
+ ```shell
162
+ pip3 uninstall -y transformers
163
+ pip3 install git+https://github.com/huggingface/transformers.git
164
+ ```
165
 
166
+ ### You can then use the following code
167
 
168
  ```python
169
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
170
 
171
  model_name_or_path = "TheBloke/Nous-Hermes-Llama-2-7B-GPTQ"
172
+ # To use a different branch, change revision
173
+ # For example: revision="gptq-4bit-32g-actorder_True"
174
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
175
+ torch_dtype=torch.bfloat16,
176
+ device_map="auto",
177
+ revision="main")
178
 
179
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
180
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181
  prompt = "Tell me about AI"
182
  prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
183
 
184
+ ### Instruction:
185
+ {prompt}
186
 
187
  ### Response:
188
+
189
  '''
190
 
191
  print("\n\n*** Generate:")
 
196
 
197
  # Inference can also be done using transformers' pipeline
198
 
 
 
 
199
  print("*** Pipeline:")
200
  pipe = pipeline(
201
  "text-generation",
 
209
 
210
  print(pipe(prompt_template)[0]['generated_text'])
211
  ```
212
+ <!-- README_GPTQ.md-use-from-python end -->
213
 
214
+ <!-- README_GPTQ.md-compatibility start -->
215
  ## Compatibility
216
 
217
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
218
+
219
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
220
 
221
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
222
+ <!-- README_GPTQ.md-compatibility end -->
223
 
224
  <!-- footer start -->
225
  <!-- 200823 -->
 
244
 
245
  **Special thanks to**: Aemon Algiz.
246
 
247
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
248
 
249
 
250
  Thank you to all my generous patrons and donaters!
 
276
  This includes data from diverse sources such as GPTeacher, the general, roleplay v1&2, code instruct datasets, Nous Instruct & PDACTL (unpublished), and several others, detailed further below
277
 
278
  ## Collaborators
279
+ The model fine-tuning and the datasets were a collaboration of efforts and resources between Teknium, Karan4D, Emozilla, Huemin Art, and Redmond AI.
280
+
281
  Special mention goes to @winglian for assisting in some of the training issues.
282
 
283
+ Huge shoutout and acknowledgement is deserved for all the dataset creators who generously share their datasets openly.
284
 
285
  Among the contributors of datasets:
286
  - GPTeacher was made available by Teknium
287
  - Wizard LM by nlpxucan
288
+ - Nous Research Instruct Dataset was provided by Karan4D and HueminArt.
289
  - GPT4-LLM and Unnatural Instructions were provided by Microsoft
290
  - Airoboros dataset by jondurbin
291
  - Camel-AI's domain expert datasets are from Camel-AI
 
305
 
306
  ```
307
 
308
+ or
309
 
310
  ```
311
  ### Instruction:
 
317
  ### Response:
318
  <leave a newline blank for model to respond>
319
 
320
+ ```
321
 
322
  ## Benchmark Results
323
  Coming soon
324
 
325
  ## Resources for Applied Use Cases:
326
+ For an example of a back and forth chatbot using huggingface transformers and discord, check out: https://github.com/teknium1/alpaca-discord
327
+ For an example of a roleplaying discord chatbot, check out this: https://github.com/teknium1/alpaca-roleplay-discordbot
328
 
329
  LM Studio is a good choice for a chat interface that supports GGML versions (to come)
330
 
331
  ## Future Plans
332
+ We plan to continue to iterate on both more high quality data, and new data filtering techniques to eliminate lower quality data going forward.
333
 
334
  ## Model Usage
335
  The model is available for download on Hugging Face. It is suitable for a wide range of language tasks, from generating creative text to understanding and following complex instructions.
336
+