|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ LLaMA model configuration""" | 
					
						
						|  |  | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LlamaConfig(PretrainedConfig): | 
					
						
						|  | r""" | 
					
						
						|  | This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA | 
					
						
						|  | model according to the specified arguments, defining the model architecture. Instantiating a configuration with the | 
					
						
						|  | defaults will yield a similar configuration to that of the LLaMA-7B. | 
					
						
						|  |  | 
					
						
						|  | Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | 
					
						
						|  | documentation from [`PretrainedConfig`] for more information. | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_size (`int`, *optional*, defaults to 32000): | 
					
						
						|  | Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the | 
					
						
						|  | `inputs_ids` passed when calling [`LlamaModel`] | 
					
						
						|  | hidden_size (`int`, *optional*, defaults to 4096): | 
					
						
						|  | Dimension of the hidden representations. | 
					
						
						|  | intermediate_size (`int`, *optional*, defaults to 11008): | 
					
						
						|  | Dimension of the MLP representations. | 
					
						
						|  | num_hidden_layers (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of hidden layers in the Transformer encoder. | 
					
						
						|  | num_attention_heads (`int`, *optional*, defaults to 32): | 
					
						
						|  | Number of attention heads for each attention layer in the Transformer encoder. | 
					
						
						|  | num_key_value_heads (`int`, *optional*): | 
					
						
						|  | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | 
					
						
						|  | `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if | 
					
						
						|  | `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When | 
					
						
						|  | converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed | 
					
						
						|  | by meanpooling all the original heads within that group. For more details checkout [this | 
					
						
						|  | paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to | 
					
						
						|  | `num_attention_heads`. | 
					
						
						|  | pretraining_tp (`int`, *optional*, defaults to `1`): | 
					
						
						|  | Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this | 
					
						
						|  | document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is | 
					
						
						|  | necessary to ensure exact reproducibility of the pretraining results. Please refer to [this | 
					
						
						|  | issue](https://github.com/pytorch/pytorch/issues/76232). | 
					
						
						|  | hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): | 
					
						
						|  | The non-linear activation function (function or string) in the decoder. | 
					
						
						|  | max_position_embeddings (`int`, *optional*, defaults to 2048): | 
					
						
						|  | The maximum sequence length that this model might ever be used with. Typically set this to something large | 
					
						
						|  | just in case (e.g., 512 or 1024 or 2048). | 
					
						
						|  | initializer_range (`float`, *optional*, defaults to 0.02): | 
					
						
						|  | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 
					
						
						|  | rms_norm_eps (`float`, *optional*, defaults to 1e-12): | 
					
						
						|  | The epsilon used by the rms normalization layers. | 
					
						
						|  | use_cache (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether or not the model should return the last key/values attentions (not used by all models). Only | 
					
						
						|  | relevant if `config.is_decoder=True`. | 
					
						
						|  | tie_word_embeddings(`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to tie weight embeddings | 
					
						
						|  | rope_scaling (`Dict`, *optional*): | 
					
						
						|  | Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling | 
					
						
						|  | strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format | 
					
						
						|  | is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | 
					
						
						|  | `max_position_embeddings` to the expected new maximum. See the following thread for more information on how | 
					
						
						|  | these scaling strategies behave: | 
					
						
						|  | https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an | 
					
						
						|  | experimental feature, subject to breaking API changes in future versions. | 
					
						
						|  | attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): | 
					
						
						|  | Whether to use a bias in the query, key, value and output projection layers during self-attention. | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import LlamaModel, LlamaConfig | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a LLaMA llama-7b style configuration | 
					
						
						|  | >>> configuration = LlamaConfig() | 
					
						
						|  |  | 
					
						
						|  | >>> # Initializing a model from the llama-7b style configuration | 
					
						
						|  | >>> model = LlamaModel(configuration) | 
					
						
						|  |  | 
					
						
						|  | >>> # Accessing the model configuration | 
					
						
						|  | >>> configuration = model.config | 
					
						
						|  | ```""" | 
					
						
						|  | model_type = "llama" | 
					
						
						|  | keys_to_ignore_at_inference = ["past_key_values"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_size=32000, | 
					
						
						|  | hidden_size=5120, | 
					
						
						|  | intermediate_size=13824, | 
					
						
						|  | num_hidden_layers=62, | 
					
						
						|  | num_attention_heads=40, | 
					
						
						|  | num_key_value_heads=40, | 
					
						
						|  | hidden_act="silu", | 
					
						
						|  | max_position_embeddings=10240, | 
					
						
						|  | initializer_range=0.02, | 
					
						
						|  | rms_norm_eps=1e-05, | 
					
						
						|  | use_cache=False, | 
					
						
						|  | pad_token_id=0, | 
					
						
						|  | bos_token_id=1, | 
					
						
						|  | eos_token_id=2, | 
					
						
						|  | pretraining_tp=1, | 
					
						
						|  | tie_word_embeddings=False, | 
					
						
						|  | rope_theta=10000, | 
					
						
						|  | rope_scaling=None, | 
					
						
						|  | attention_bias=False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.vocab_size = vocab_size | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.hidden_size = hidden_size | 
					
						
						|  | self.intermediate_size = intermediate_size | 
					
						
						|  | self.num_hidden_layers = num_hidden_layers | 
					
						
						|  | self.num_attention_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if num_key_value_heads is None: | 
					
						
						|  | num_key_value_heads = num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | self.num_key_value_heads = num_key_value_heads | 
					
						
						|  | self.hidden_act = hidden_act | 
					
						
						|  | self.initializer_range = initializer_range | 
					
						
						|  | self.rms_norm_eps = rms_norm_eps | 
					
						
						|  | self.pretraining_tp = pretraining_tp | 
					
						
						|  | self.use_cache = use_cache | 
					
						
						|  | self.rope_theta = rope_theta | 
					
						
						|  | self.rope_scaling = rope_scaling | 
					
						
						|  | self._rope_scaling_validation() | 
					
						
						|  | self.attention_bias = attention_bias | 
					
						
						|  |  | 
					
						
						|  | super().__init__( | 
					
						
						|  | pad_token_id=pad_token_id, | 
					
						
						|  | bos_token_id=bos_token_id, | 
					
						
						|  | eos_token_id=eos_token_id, | 
					
						
						|  | tie_word_embeddings=tie_word_embeddings, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _rope_scaling_validation(self): | 
					
						
						|  | """ | 
					
						
						|  | Validate the `rope_scaling` configuration. | 
					
						
						|  | """ | 
					
						
						|  | if self.rope_scaling is None: | 
					
						
						|  | return | 
					
						
						|  |  | 
					
						
						|  | if not isinstance(self.rope_scaling, dict): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "`rope_scaling` must be a dictionary, " | 
					
						
						|  | f"got {self.rope_scaling}" | 
					
						
						|  | ) | 
					
						
						|  | rope_scaling_type = self.rope_scaling.get("type", None) | 
					
						
						|  | rope_scaling_factor = self.rope_scaling.get("factor", None) | 
					
						
						|  | if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "yarn", "dynamic-yarn"]: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'yarn', 'dynamic-yarn'], got {rope_scaling_type}" | 
					
						
						|  | ) | 
					
						
						|  | if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: | 
					
						
						|  | raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}") | 
					
						
						|  | if rope_scaling_type == "yarn" or rope_scaling_type == "dynamic-yarn": | 
					
						
						|  | original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None) | 
					
						
						|  | if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int): | 
					
						
						|  | raise ValueError(f"`rope_scaling.original_max_position_embeddings` must be set to an int when using yarn, and dynamic-yarn") | 
					
						
						|  |  |