Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: abideen/NexoNimbus-7B
|
3 |
+
inference: false
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
license: apache-2.0
|
7 |
+
model_creator: Zain ul Abideen
|
8 |
+
model_name: NexoNimbus 7B
|
9 |
+
model_type: mistral
|
10 |
+
prompt_template: '{prompt}
|
11 |
+
|
12 |
+
'
|
13 |
+
quantized_by: TheBloke
|
14 |
+
tags:
|
15 |
+
- merge
|
16 |
+
- abideen/DareVox-7B
|
17 |
+
- udkai/Garrulus
|
18 |
+
---
|
19 |
+
<!-- markdownlint-disable MD041 -->
|
20 |
+
|
21 |
+
<!-- header start -->
|
22 |
+
<!-- 200823 -->
|
23 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
24 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
25 |
+
</div>
|
26 |
+
<div style="display: flex; justify-content: space-between; width: 100%;">
|
27 |
+
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
28 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
|
29 |
+
</div>
|
30 |
+
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
31 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
32 |
+
</div>
|
33 |
+
</div>
|
34 |
+
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
|
35 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
36 |
+
<!-- header end -->
|
37 |
+
|
38 |
+
# NexoNimbus 7B - AWQ
|
39 |
+
- Model creator: [Zain ul Abideen](https://huggingface.co/abideen)
|
40 |
+
- Original model: [NexoNimbus 7B](https://huggingface.co/abideen/NexoNimbus-7B)
|
41 |
+
|
42 |
+
<!-- description start -->
|
43 |
+
## Description
|
44 |
+
|
45 |
+
This repo contains AWQ model files for [Zain ul Abideen's NexoNimbus 7B](https://huggingface.co/abideen/NexoNimbus-7B).
|
46 |
+
|
47 |
+
These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
|
48 |
+
|
49 |
+
|
50 |
+
### About AWQ
|
51 |
+
|
52 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
|
53 |
+
|
54 |
+
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
|
55 |
+
|
56 |
+
It is supported by:
|
57 |
+
|
58 |
+
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
|
59 |
+
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
|
60 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
|
61 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
|
62 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|
63 |
+
|
64 |
+
<!-- description end -->
|
65 |
+
<!-- repositories-available start -->
|
66 |
+
## Repositories available
|
67 |
+
|
68 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/NexoNimbus-7B-AWQ)
|
69 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/NexoNimbus-7B-GPTQ)
|
70 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/NexoNimbus-7B-GGUF)
|
71 |
+
* [Zain ul Abideen's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/abideen/NexoNimbus-7B)
|
72 |
+
<!-- repositories-available end -->
|
73 |
+
|
74 |
+
<!-- prompt-template start -->
|
75 |
+
## Prompt template: Unknown
|
76 |
+
|
77 |
+
```
|
78 |
+
{prompt}
|
79 |
+
|
80 |
+
```
|
81 |
+
|
82 |
+
<!-- prompt-template end -->
|
83 |
+
|
84 |
+
|
85 |
+
<!-- README_AWQ.md-provided-files start -->
|
86 |
+
## Provided files, and AWQ parameters
|
87 |
+
|
88 |
+
I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
|
89 |
+
|
90 |
+
Models are released as sharded safetensors files.
|
91 |
+
|
92 |
+
| Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
|
93 |
+
| ------ | ---- | -- | ----------- | ------- | ---- |
|
94 |
+
| [main](https://huggingface.co/TheBloke/NexoNimbus-7B-AWQ/tree/main) | 4 | 128 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
|
95 |
+
|
96 |
+
<!-- README_AWQ.md-provided-files end -->
|
97 |
+
|
98 |
+
<!-- README_AWQ.md-text-generation-webui start -->
|
99 |
+
## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
100 |
+
|
101 |
+
Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
|
102 |
+
|
103 |
+
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
|
104 |
+
|
105 |
+
1. Click the **Model tab**.
|
106 |
+
2. Under **Download custom model or LoRA**, enter `TheBloke/NexoNimbus-7B-AWQ`.
|
107 |
+
3. Click **Download**.
|
108 |
+
4. The model will start downloading. Once it's finished it will say "Done".
|
109 |
+
5. In the top left, click the refresh icon next to **Model**.
|
110 |
+
6. In the **Model** dropdown, choose the model you just downloaded: `NexoNimbus-7B-AWQ`
|
111 |
+
7. Select **Loader: AutoAWQ**.
|
112 |
+
8. Click Load, and the model will load and is now ready for use.
|
113 |
+
9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
|
114 |
+
10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
|
115 |
+
<!-- README_AWQ.md-text-generation-webui end -->
|
116 |
+
|
117 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
118 |
+
## Multi-user inference server: vLLM
|
119 |
+
|
120 |
+
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
121 |
+
|
122 |
+
- Please ensure you are using vLLM version 0.2 or later.
|
123 |
+
- When using vLLM as a server, pass the `--quantization awq` parameter.
|
124 |
+
|
125 |
+
For example:
|
126 |
+
|
127 |
+
```shell
|
128 |
+
python3 -m vllm.entrypoints.api_server --model TheBloke/NexoNimbus-7B-AWQ --quantization awq --dtype auto
|
129 |
+
```
|
130 |
+
|
131 |
+
- When using vLLM from Python code, again set `quantization=awq`.
|
132 |
+
|
133 |
+
For example:
|
134 |
+
|
135 |
+
```python
|
136 |
+
from vllm import LLM, SamplingParams
|
137 |
+
|
138 |
+
prompts = [
|
139 |
+
"Tell me about AI",
|
140 |
+
"Write a story about llamas",
|
141 |
+
"What is 291 - 150?",
|
142 |
+
"How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
|
143 |
+
]
|
144 |
+
prompt_template=f'''{prompt}
|
145 |
+
'''
|
146 |
+
|
147 |
+
prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
|
148 |
+
|
149 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
150 |
+
|
151 |
+
llm = LLM(model="TheBloke/NexoNimbus-7B-AWQ", quantization="awq", dtype="auto")
|
152 |
+
|
153 |
+
outputs = llm.generate(prompts, sampling_params)
|
154 |
+
|
155 |
+
# Print the outputs.
|
156 |
+
for output in outputs:
|
157 |
+
prompt = output.prompt
|
158 |
+
generated_text = output.outputs[0].text
|
159 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
160 |
+
```
|
161 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
162 |
+
|
163 |
+
<!-- README_AWQ.md-use-from-tgi start -->
|
164 |
+
## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
|
165 |
+
|
166 |
+
Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
|
167 |
+
|
168 |
+
Example Docker parameters:
|
169 |
+
|
170 |
+
```shell
|
171 |
+
--model-id TheBloke/NexoNimbus-7B-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
|
172 |
+
```
|
173 |
+
|
174 |
+
Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
|
175 |
+
|
176 |
+
```shell
|
177 |
+
pip3 install huggingface-hub
|
178 |
+
```
|
179 |
+
|
180 |
+
```python
|
181 |
+
from huggingface_hub import InferenceClient
|
182 |
+
|
183 |
+
endpoint_url = "https://your-endpoint-url-here"
|
184 |
+
|
185 |
+
prompt = "Tell me about AI"
|
186 |
+
prompt_template=f'''{prompt}
|
187 |
+
'''
|
188 |
+
|
189 |
+
client = InferenceClient(endpoint_url)
|
190 |
+
response = client.text_generation(prompt,
|
191 |
+
max_new_tokens=128,
|
192 |
+
do_sample=True,
|
193 |
+
temperature=0.7,
|
194 |
+
top_p=0.95,
|
195 |
+
top_k=40,
|
196 |
+
repetition_penalty=1.1)
|
197 |
+
|
198 |
+
print(f"Model output: ", response)
|
199 |
+
```
|
200 |
+
<!-- README_AWQ.md-use-from-tgi end -->
|
201 |
+
|
202 |
+
<!-- README_AWQ.md-use-from-python start -->
|
203 |
+
## Inference from Python code using Transformers
|
204 |
+
|
205 |
+
### Install the necessary packages
|
206 |
+
|
207 |
+
- Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
|
208 |
+
- Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
|
209 |
+
|
210 |
+
```shell
|
211 |
+
pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
|
212 |
+
```
|
213 |
+
|
214 |
+
Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
|
215 |
+
|
216 |
+
If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
|
217 |
+
|
218 |
+
```shell
|
219 |
+
pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
|
220 |
+
```
|
221 |
+
|
222 |
+
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
|
223 |
+
|
224 |
+
```shell
|
225 |
+
pip3 uninstall -y autoawq
|
226 |
+
git clone https://github.com/casper-hansen/AutoAWQ
|
227 |
+
cd AutoAWQ
|
228 |
+
pip3 install .
|
229 |
+
```
|
230 |
+
|
231 |
+
### Transformers example code (requires Transformers 4.35.0 and later)
|
232 |
+
|
233 |
+
```python
|
234 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
235 |
+
|
236 |
+
model_name_or_path = "TheBloke/NexoNimbus-7B-AWQ"
|
237 |
+
|
238 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
239 |
+
model = AutoModelForCausalLM.from_pretrained(
|
240 |
+
model_name_or_path,
|
241 |
+
low_cpu_mem_usage=True,
|
242 |
+
device_map="cuda:0"
|
243 |
+
)
|
244 |
+
|
245 |
+
# Using the text streamer to stream output one token at a time
|
246 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
247 |
+
|
248 |
+
prompt = "Tell me about AI"
|
249 |
+
prompt_template=f'''{prompt}
|
250 |
+
'''
|
251 |
+
|
252 |
+
# Convert prompt to tokens
|
253 |
+
tokens = tokenizer(
|
254 |
+
prompt_template,
|
255 |
+
return_tensors='pt'
|
256 |
+
).input_ids.cuda()
|
257 |
+
|
258 |
+
generation_params = {
|
259 |
+
"do_sample": True,
|
260 |
+
"temperature": 0.7,
|
261 |
+
"top_p": 0.95,
|
262 |
+
"top_k": 40,
|
263 |
+
"max_new_tokens": 512,
|
264 |
+
"repetition_penalty": 1.1
|
265 |
+
}
|
266 |
+
|
267 |
+
# Generate streamed output, visible one token at a time
|
268 |
+
generation_output = model.generate(
|
269 |
+
tokens,
|
270 |
+
streamer=streamer,
|
271 |
+
**generation_params
|
272 |
+
)
|
273 |
+
|
274 |
+
# Generation without a streamer, which will include the prompt in the output
|
275 |
+
generation_output = model.generate(
|
276 |
+
tokens,
|
277 |
+
**generation_params
|
278 |
+
)
|
279 |
+
|
280 |
+
# Get the tokens from the output, decode them, print them
|
281 |
+
token_output = generation_output[0]
|
282 |
+
text_output = tokenizer.decode(token_output)
|
283 |
+
print("model.generate output: ", text_output)
|
284 |
+
|
285 |
+
# Inference is also possible via Transformers' pipeline
|
286 |
+
from transformers import pipeline
|
287 |
+
|
288 |
+
pipe = pipeline(
|
289 |
+
"text-generation",
|
290 |
+
model=model,
|
291 |
+
tokenizer=tokenizer,
|
292 |
+
**generation_params
|
293 |
+
)
|
294 |
+
|
295 |
+
pipe_output = pipe(prompt_template)[0]['generated_text']
|
296 |
+
print("pipeline output: ", pipe_output)
|
297 |
+
|
298 |
+
```
|
299 |
+
<!-- README_AWQ.md-use-from-python end -->
|
300 |
+
|
301 |
+
<!-- README_AWQ.md-compatibility start -->
|
302 |
+
## Compatibility
|
303 |
+
|
304 |
+
The files provided are tested to work with:
|
305 |
+
|
306 |
+
- [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
|
307 |
+
- [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
|
308 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
|
309 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
|
310 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
|
311 |
+
|
312 |
+
<!-- README_AWQ.md-compatibility end -->
|
313 |
+
|
314 |
+
<!-- footer start -->
|
315 |
+
<!-- 200823 -->
|
316 |
+
## Discord
|
317 |
+
|
318 |
+
For further support, and discussions on these models and AI in general, join us at:
|
319 |
+
|
320 |
+
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
321 |
+
|
322 |
+
## Thanks, and how to contribute
|
323 |
+
|
324 |
+
Thanks to the [chirper.ai](https://chirper.ai) team!
|
325 |
+
|
326 |
+
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
|
327 |
+
|
328 |
+
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
329 |
+
|
330 |
+
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
331 |
+
|
332 |
+
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
|
333 |
+
|
334 |
+
* Patreon: https://patreon.com/TheBlokeAI
|
335 |
+
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
336 |
+
|
337 |
+
**Special thanks to**: Aemon Algiz.
|
338 |
+
|
339 |
+
**Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
|
340 |
+
|
341 |
+
|
342 |
+
Thank you to all my generous patrons and donaters!
|
343 |
+
|
344 |
+
And thank you again to a16z for their generous grant.
|
345 |
+
|
346 |
+
<!-- footer end -->
|
347 |
+
|
348 |
+
# Original model card: Zain ul Abideen's NexoNimbus 7B
|
349 |
+
|
350 |
+
|
351 |
+
# NexoNimbus-7B
|
352 |
+
|
353 |
+
|
354 |
+
|
355 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/9lIzCPqDYR6nnLgoH6kMp.png)
|
356 |
+
|
357 |
+
|
358 |
+
NexoNimbus-7B is a merge of the following models:
|
359 |
+
* [abideen/DareVox-7B](https://huggingface.co/abideen/DareVox-7B)
|
360 |
+
* [udkai/Garrulus](https://huggingface.co/udkai/Garrulus)
|
361 |
+
|
362 |
+
🏆 Evaluation
|
363 |
+
NexoNimbus-7B is the 5th best-performing 7B LLM on the Open LLM Leaderboard:
|
364 |
+
|
365 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/MIkOaXVGJ0T5UVYIEhtYA.png)
|
366 |
+
|
367 |
+
|
368 |
+
| Task |Version| Metric |Value| |Stderr|
|
369 |
+
|-------------|------:|--------|----:|---|-----:|
|
370 |
+
|arc_challenge| 0|acc |68.25|± | 1.36|
|
371 |
+
| | |acc_norm|70.81|± | 1.38|
|
372 |
+
|hellaswag | 0|acc |70.86|± | 0.45|
|
373 |
+
| | |acc_norm|87.86|± | 0.32|
|
374 |
+
|gsm8k | 0|acc |70.35|± | 1.25|
|
375 |
+
|winogrande | 0|acc |84.84|± | 1.00|
|
376 |
+
|mmlu | 0|acc |64.69|± | 1.00|
|
377 |
+
|
378 |
+
Average: 73.5%
|
379 |
+
|
380 |
+
### TruthfulQA
|
381 |
+
| Task |Version|Metric|Value| |Stderr|
|
382 |
+
|-------------|------:|------|----:|---|-----:|
|
383 |
+
|truthfulqa_mc| 1|mc1 |46.26|± | 1.74|
|
384 |
+
| | |mc2 |62.42|± | 1.54|
|
385 |
+
|
386 |
+
|
387 |
+
## 🧩 Configuration
|
388 |
+
|
389 |
+
```yaml
|
390 |
+
slices:
|
391 |
+
- sources:
|
392 |
+
- model: abideen/DareVox-7B
|
393 |
+
layer_range: [0, 32]
|
394 |
+
- model: udkai/Garrulus
|
395 |
+
layer_range: [0, 32]
|
396 |
+
merge_method: slerp
|
397 |
+
base_model: abideen/DareVox-7B
|
398 |
+
parameters:
|
399 |
+
t:
|
400 |
+
- filter: self_attn
|
401 |
+
value: [0, 0.5, 0.3, 0.7, 1]
|
402 |
+
- filter: mlp
|
403 |
+
value: [1, 0.5, 0.7, 0.3, 0]
|
404 |
+
- value: 0.5
|
405 |
+
dtype: bfloat16
|
406 |
+
|
407 |
+
```
|
408 |
+
|
409 |
+
## 💻 Usage
|
410 |
+
|
411 |
+
Here's a [Colab notebook](https://colab.research.google.com/drive/1F9lzL1IeZRMgiSbY9UbgCR__RreIflJh?usp=sharing) to run NexoNimbus-7B in 4-bit precision on a free T4 GPU.
|
412 |
+
|
413 |
+
```python
|
414 |
+
!pip install -qU transformers accelerate
|
415 |
+
|
416 |
+
from transformers import AutoTokenizer
|
417 |
+
import transformers
|
418 |
+
import torch
|
419 |
+
|
420 |
+
model = "abideen/NexoNimbus-7B"
|
421 |
+
messages = [{"role": "user", "content": "Explain what is Machine learning."}]
|
422 |
+
|
423 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
424 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
425 |
+
pipeline = transformers.pipeline(
|
426 |
+
"text-generation",
|
427 |
+
model=model,
|
428 |
+
torch_dtype=torch.float16,
|
429 |
+
device_map="auto",
|
430 |
+
)
|
431 |
+
|
432 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
433 |
+
print(outputs[0]["generated_text"])
|
434 |
+
```
|
435 |
+
|
436 |
+
"Machine learning is a subfield of artificial intelligence that focuses on developing algorithms and models that allow computers to learn and improve their performance over time, without being explicitly programmed. It involves the use of statistical techniques and data analysis to identify patterns and make predictions based on input data.
|
437 |
+
In machine learning, data is fed into a model, which then adjusts its internal parameters to minimize the difference between the predicted output and the actual output. This process is called training, and as the model is exposed to more data, it becomes better at making predictions or classifications.
|
438 |
+
Machine learning can be divided into several categories, including supervised learning, unsupervised learning, and reinforcement learning. Supervised learning involves using labeled data, where the desired output is known, and the model learns to map inputs to outputs. Unsupervised learning, on the other hand, does not have a predefined output, and the model learns to identify patterns or relationships within the data. Reinforcement learning involves learning through trial and error, with the model receiving feedback in the form of rewards or penalties based on its actions.
|
439 |
+
Some common applications of machine learning include image recognition, natural language processing, recommendation systems, fraud detection, and self-driving."
|