TheBloke commited on
Commit
b143866
1 Parent(s): ecd8e8c

GPTQ model commit

Browse files
License_Agreement_for_Large_Language_Models_Nanbeige.pdf ADDED
Binary file (181 kB). View file
 
config.json ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/workspace/process/nanbeige_nanbeige-16b-base/source",
3
+ "architectures": [
4
+ "NanbeigeForCausalLM"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_nanbeige.NanbeigeConfig",
8
+ "AutoModelForCausalLM": "modeling_nanbeige.NanbeigeForCausalLM"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "hidden_act": "silu",
13
+ "hidden_size": 5120,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 13824,
16
+ "max_length": 4096,
17
+ "max_position_embeddings": 4096,
18
+ "model_type": "nanbeige",
19
+ "num_attention_heads": 40,
20
+ "num_hidden_layers": 48,
21
+ "pad_token_id": 0,
22
+ "pretraining_tp": 1,
23
+ "quantization_config": {
24
+ "batch_size": 1,
25
+ "bits": 4,
26
+ "block_name_to_quantize": "model.layers",
27
+ "cache_block_outputs": true,
28
+ "damp_percent": 0.1,
29
+ "desc_act": true,
30
+ "exllama_config": {
31
+ "version": 1
32
+ },
33
+ "group_size": 128,
34
+ "max_input_length": null,
35
+ "model_seqlen": 4096,
36
+ "module_name_preceding_first_block": [
37
+ "model.embed_tokens"
38
+ ],
39
+ "pad_token_id": null,
40
+ "quant_method": "gptq",
41
+ "sym": true,
42
+ "tokenizer": null,
43
+ "true_sequential": true,
44
+ "use_cuda_fp16": false,
45
+ "use_exllama": true
46
+ },
47
+ "rms_norm_eps": 1e-05,
48
+ "tie_word_embeddings": false,
49
+ "torch_dtype": "bfloat16",
50
+ "transformers_version": "4.35.2",
51
+ "use_cache": true,
52
+ "vocab_size": 59136,
53
+ "yarn_scale": 1.0
54
+ }
configuration_nanbeige.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023 Nanbeige LLM Lab All Rights Reserved.
2
+
3
+ """ Nanbeige model configuration"""
4
+
5
+ from transformers.configuration_utils import PretrainedConfig
6
+ from transformers.utils import logging
7
+
8
+
9
+ logger = logging.get_logger(__name__)
10
+
11
+ NANBEIGE_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
12
+
13
+
14
+ class NanbeigeConfig(PretrainedConfig):
15
+ model_type = "nanbeige"
16
+
17
+ def __init__(
18
+ self,
19
+ vocab_size=32000,
20
+ hidden_size=4096,
21
+ intermediate_size=11008,
22
+ num_hidden_layers=32,
23
+ num_attention_heads=32,
24
+ hidden_act="silu",
25
+ max_position_embeddings=2048,
26
+ initializer_range=0.02,
27
+ rms_norm_eps=1e-6,
28
+ use_cache=True,
29
+ pad_token_id=0,
30
+ bos_token_id=1,
31
+ eos_token_id=2,
32
+ tie_word_embeddings=False,
33
+ yarn_scale=1.,
34
+ **kwargs,
35
+ ):
36
+ self.vocab_size = vocab_size
37
+ self.max_position_embeddings = max_position_embeddings
38
+ self.hidden_size = hidden_size
39
+ self.intermediate_size = intermediate_size
40
+ self.num_hidden_layers = num_hidden_layers
41
+ self.num_attention_heads = num_attention_heads
42
+ self.hidden_act = hidden_act
43
+ self.initializer_range = initializer_range
44
+ self.rms_norm_eps = rms_norm_eps
45
+ self.use_cache = use_cache
46
+ self.yarn_scale = yarn_scale
47
+ super().__init__(
48
+ pad_token_id=pad_token_id,
49
+ bos_token_id=bos_token_id,
50
+ eos_token_id=eos_token_id,
51
+ tie_word_embeddings=tie_word_embeddings,
52
+ **kwargs,
53
+ )
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.9,
8
+ "top_p": 0.6,
9
+ "transformers_version": "4.28.1"
10
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fd9bc90a3a1efc4016f07199e62fc13689ee2a3294ff924f021e9f3cf00bcc0
3
+ size 4989644496
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bb15877ddbea24997f8f59b2d599efd9415857c5f75b2e3b6401eb0220a97fc
3
+ size 4146366688
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_nanbeige.py ADDED
@@ -0,0 +1,948 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023 Nanbeige LLM Lab All Rights Reserved.
2
+
3
+ import math
4
+ import queue
5
+ import threading
6
+ from typing import List, Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torch.utils.checkpoint
10
+ from torch import nn
11
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
12
+ from transformers.activations import ACT2FN
13
+ from transformers.generation.streamers import BaseStreamer
14
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, \
15
+ SequenceClassifierOutputWithPast
16
+ from transformers.modeling_utils import PreTrainedModel
17
+ from transformers.utils import logging
18
+
19
+ from .configuration_nanbeige import NanbeigeConfig
20
+
21
+ logger = logging.get_logger(__name__)
22
+ NANBEIGE_SYSTEM_PROMPT = "你是一个名为\"南北阁\"的人工智能助手,正在与人类用户进行交谈。你的目标是以最有帮助和最逻辑的方式回答问题,同时确保内容的安全性。你的回答中不应包含任何有害、政治化、宗教化、不道德、种族主义、性别歧视、有毒、危险或非法的内容。请确保你的回答不带有社会偏见,并且始终积极正面,符合社会主义价值观。如果遇到的问题无意义或事实上不连贯,请不要回答错误的内容,而是解释问题为何无效或不连贯。如果你不知道问题的答案,也请勿提供错误的信息。你是由南北阁大模型实验室的LLM团队训练的。知识截止日期是2023年9月。"
23
+
24
+ try:
25
+ import flash_attn
26
+ from flash_attn import flash_attn_func
27
+
28
+ if int(flash_attn.__version__.split(".")[0]) >= 2 and int(flash_attn.__version__.split(".")[1]) >= 1:
29
+ Version_ = True
30
+ else:
31
+ Version_ = False
32
+ except:
33
+ logger.warn(
34
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
35
+ "https://github.com/Dao-AILab/flash-attention"
36
+ )
37
+ Version_ = False
38
+ flash_attn_func = None
39
+
40
+
41
+ def _make_causal_mask(
42
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
43
+ ):
44
+ """
45
+ Make causal mask used for bi-directional self-attention.
46
+ """
47
+ bsz, tgt_len = input_ids_shape
48
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
49
+ mask_cond = torch.arange(mask.size(-1), device=device)
50
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
51
+ mask = mask.to(dtype)
52
+
53
+ if past_key_values_length > 0:
54
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
55
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
56
+
57
+
58
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
59
+ """
60
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
61
+ """
62
+ bsz, src_len = mask.size()
63
+ tgt_len = tgt_len if tgt_len is not None else src_len
64
+
65
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
66
+
67
+ inverted_mask = 1.0 - expanded_mask
68
+
69
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
70
+
71
+
72
+ def find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
73
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
74
+
75
+
76
+ def find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
77
+ low = math.floor(find_correction_dim(
78
+ low_rot, dim, base, max_position_embeddings))
79
+ high = math.ceil(find_correction_dim(
80
+ high_rot, dim, base, max_position_embeddings))
81
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
82
+
83
+
84
+ def linear_ramp_mask(min, max, dim):
85
+ if min == max:
86
+ max += 0.001 # Prevent singularity
87
+
88
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
89
+ ramp_func = torch.clamp(linear_func, 0, 1)
90
+ return ramp_func
91
+
92
+
93
+ def get_mscale(scale=1):
94
+ if scale <= 1:
95
+ return 1.0
96
+ return 0.1 * math.log(scale) + 1.0
97
+
98
+
99
+ class YaRNScaledRotaryEmbedding(torch.nn.Module):
100
+ def __init__(self, dim, max_position_embeddings=4096, base=10000, scale=1, original_max_position_embeddings=4096,
101
+ extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, finetuned=False, device=None):
102
+ super().__init__()
103
+ self.dim = dim
104
+ self.max_position_embeddings = max_position_embeddings
105
+ self.base = base
106
+ self.scale = scale
107
+ self.original_max_position_embeddings = original_max_position_embeddings
108
+ self.extrapolation_factor = extrapolation_factor
109
+ self.attn_factor = attn_factor
110
+ self.beta_fast = beta_fast
111
+ self.beta_slow = beta_slow
112
+
113
+ self.yarn(device)
114
+
115
+ # Build here to make `torch.jit.trace` work.
116
+ self.max_seq_len_cached = max_position_embeddings
117
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
118
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
119
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
120
+ emb = torch.cat((freqs, freqs), dim=-1)
121
+ dtype = torch.get_default_dtype()
122
+
123
+ self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
124
+ self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
125
+
126
+ def forward(self, x, seq_len=None):
127
+ # x: [bs, num_attention_heads, seq_len, head_size]
128
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
129
+ if seq_len > self.max_seq_len_cached:
130
+ self.max_seq_len_cached = seq_len
131
+
132
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
133
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
134
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
135
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
136
+
137
+ self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(x.dtype),
138
+ persistent=False)
139
+ self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(x.dtype),
140
+ persistent=False)
141
+ return (
142
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
143
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
144
+ )
145
+
146
+ def yarn(self, device):
147
+ pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
148
+ inv_freq_extrapolation = 1.0 / pos_freqs
149
+ inv_freq_interpolation = 1.0 / (self.scale * pos_freqs)
150
+
151
+ low, high = find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base,
152
+ self.original_max_position_embeddings)
153
+ inv_freq_mask = (1 - linear_ramp_mask(low, high, self.dim // 2).float().to(
154
+ device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
155
+ inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
156
+
157
+ self.register_buffer("inv_freq", inv_freq)
158
+ self.mscale = float(
159
+ get_mscale(self.scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
160
+
161
+
162
+ class RMSNorm(nn.Module):
163
+ def __init__(self, hidden_size, eps=1e-6):
164
+ super().__init__()
165
+ self.weight = nn.Parameter(torch.ones(hidden_size))
166
+ self.variance_epsilon = eps
167
+
168
+ def forward(self, hidden_states):
169
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
170
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
171
+
172
+ # convert into half-precision if necessary
173
+ if self.weight.dtype in [torch.float16, torch.bfloat16]:
174
+ hidden_states = hidden_states.to(self.weight.dtype)
175
+
176
+ return self.weight * hidden_states
177
+
178
+
179
+ class RotaryEmbedding(torch.nn.Module):
180
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
181
+ super().__init__()
182
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
183
+ self.register_buffer("inv_freq", inv_freq)
184
+ self.max_seq_len_cached = max_position_embeddings
185
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
186
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
187
+ emb = torch.cat((freqs, freqs), dim=-1)
188
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
189
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
190
+
191
+ def forward(self, x, seq_len=None):
192
+ # x: [bs, num_attention_heads, seq_len, head_size]
193
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
194
+ if seq_len > self.max_seq_len_cached:
195
+ self.max_seq_len_cached = seq_len
196
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
197
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
198
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
199
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
200
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
201
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
202
+ return (
203
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
204
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
205
+ )
206
+
207
+
208
+ def rotate_half(x):
209
+ """Rotates half the hidden dims of the input."""
210
+ x1 = x[..., : x.shape[-1] // 2]
211
+ x2 = x[..., x.shape[-1] // 2:]
212
+ return torch.cat((-x2, x1), dim=-1)
213
+
214
+
215
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
216
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
217
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
218
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
219
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
220
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
221
+ q_embed = (q * cos) + (rotate_half(q) * sin)
222
+ k_embed = (k * cos) + (rotate_half(k) * sin)
223
+ return q_embed, k_embed
224
+
225
+
226
+ class NanbeigeMLP(nn.Module):
227
+ def __init__(
228
+ self,
229
+ hidden_size: int,
230
+ intermediate_size: int,
231
+ hidden_act: str,
232
+ ):
233
+ super().__init__()
234
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
235
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
236
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
237
+ self.act_fn = ACT2FN[hidden_act]
238
+
239
+ def forward(self, x):
240
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
241
+
242
+
243
+ class NanbeigeAttention(nn.Module):
244
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
245
+
246
+ def __init__(self, config: NanbeigeConfig):
247
+ super().__init__()
248
+ self.config = config
249
+ self.hidden_size = config.hidden_size
250
+ self.num_heads = config.num_attention_heads
251
+ self.head_dim = self.hidden_size // self.num_heads
252
+ self.max_position_embeddings = config.max_position_embeddings
253
+
254
+ if (self.head_dim * self.num_heads) != self.hidden_size:
255
+ raise ValueError(
256
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
257
+ f" and `num_heads`: {self.num_heads})."
258
+ )
259
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
260
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
261
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
262
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
263
+ if self.config.yarn_scale > 1:
264
+ self.rotary_emb = YaRNScaledRotaryEmbedding(self.head_dim, scale=self.config.yarn_scale,
265
+ original_max_position_embeddings=self.max_position_embeddings)
266
+ else:
267
+ self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
268
+
269
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
270
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
271
+
272
+ def forward(
273
+ self,
274
+ hidden_states: torch.Tensor,
275
+ attention_mask: Optional[torch.Tensor] = None,
276
+ position_ids: Optional[torch.LongTensor] = None,
277
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
278
+ output_attentions: bool = False,
279
+ use_cache: bool = False,
280
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
281
+ bsz, q_len, _ = hidden_states.size()
282
+
283
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
284
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
285
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
286
+
287
+ kv_seq_len = key_states.shape[-2]
288
+ if past_key_value is not None:
289
+ kv_seq_len += past_key_value[0].shape[-2]
290
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
291
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
292
+
293
+ if past_key_value is not None:
294
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
295
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
296
+
297
+ past_key_value = (key_states, value_states) if use_cache else None
298
+
299
+ if Version_ or (flash_attn_func and query_states.size() == key_states.size()):
300
+ attn_output = flash_attn_func(query_states.transpose(1, 2), key_states.transpose(1, 2),
301
+ value_states.transpose(1, 2), dropout_p=0.0, softmax_scale=None, causal=True)
302
+ else:
303
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
304
+
305
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
306
+ raise ValueError(
307
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
308
+ f" {attn_weights.size()}"
309
+ )
310
+
311
+ if attention_mask is not None:
312
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
313
+ raise ValueError(
314
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
315
+ )
316
+ attn_weights = attn_weights + attention_mask
317
+ attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
318
+
319
+ # upcast attention to fp32
320
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
321
+ attn_output = torch.matmul(attn_weights, value_states)
322
+
323
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
324
+ raise ValueError(
325
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
326
+ f" {attn_output.size()}"
327
+ )
328
+
329
+ attn_output = attn_output.transpose(1, 2)
330
+
331
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
332
+
333
+ attn_output = self.o_proj(attn_output)
334
+
335
+ if not output_attentions:
336
+ attn_weights = None
337
+
338
+ return attn_output, attn_weights, past_key_value
339
+
340
+
341
+ class NanbeigeDecoderLayer(nn.Module):
342
+ def __init__(self, config: NanbeigeConfig):
343
+ super().__init__()
344
+ self.hidden_size = config.hidden_size
345
+ self.self_attn = NanbeigeAttention(config=config)
346
+ self.mlp = NanbeigeMLP(
347
+ hidden_size=self.hidden_size,
348
+ intermediate_size=config.intermediate_size,
349
+ hidden_act=config.hidden_act,
350
+ )
351
+ self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
352
+ self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
353
+
354
+ def forward(
355
+ self,
356
+ hidden_states: torch.Tensor,
357
+ attention_mask: Optional[torch.Tensor] = None,
358
+ position_ids: Optional[torch.LongTensor] = None,
359
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
360
+ output_attentions: Optional[bool] = False,
361
+ use_cache: Optional[bool] = False,
362
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
363
+ """
364
+ Args:
365
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
366
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
367
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
368
+ output_attentions (`bool`, *optional*):
369
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
370
+ returned tensors for more detail.
371
+ use_cache (`bool`, *optional*):
372
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
373
+ (see `past_key_values`).
374
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
375
+ """
376
+
377
+ residual = hidden_states
378
+
379
+ hidden_states = self.input_layernorm(hidden_states)
380
+
381
+ # Self Attention
382
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
383
+ hidden_states=hidden_states,
384
+ attention_mask=attention_mask,
385
+ position_ids=position_ids,
386
+ past_key_value=past_key_value,
387
+ output_attentions=output_attentions,
388
+ use_cache=use_cache,
389
+ )
390
+ hidden_states = residual + hidden_states
391
+
392
+ # Fully Connected
393
+ residual = hidden_states
394
+ hidden_states = self.post_attention_layernorm(hidden_states)
395
+ hidden_states = self.mlp(hidden_states)
396
+ hidden_states = residual + hidden_states
397
+
398
+ outputs = (hidden_states,)
399
+
400
+ if output_attentions:
401
+ outputs += (self_attn_weights,)
402
+
403
+ if use_cache:
404
+ outputs += (present_key_value,)
405
+
406
+ return outputs
407
+
408
+
409
+ class NanbeigePreTrainedModel(PreTrainedModel):
410
+ config_class = NanbeigeConfig
411
+ base_model_prefix = "model"
412
+ supports_gradient_checkpointing = True
413
+ _no_split_modules = ["NanbeigeDecoderLayer"]
414
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
415
+
416
+ def _init_weights(self, module):
417
+ std = self.config.initializer_range
418
+ if isinstance(module, nn.Linear):
419
+ module.weight.data.normal_(mean=0.0, std=std)
420
+ if module.bias is not None:
421
+ module.bias.data.zero_()
422
+ elif isinstance(module, nn.Embedding):
423
+ module.weight.data.normal_(mean=0.0, std=std)
424
+ if module.padding_idx is not None:
425
+ module.weight.data[module.padding_idx].zero_()
426
+
427
+ def _set_gradient_checkpointing(self, module, value=False):
428
+ if isinstance(module, NanbeigeModel):
429
+ module.gradient_checkpointing = value
430
+
431
+
432
+ class NanbeigeModel(NanbeigePreTrainedModel):
433
+ def __init__(self, config: NanbeigeConfig):
434
+ super().__init__(config)
435
+ self.padding_idx = config.pad_token_id
436
+ self.vocab_size = config.vocab_size
437
+
438
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
439
+ self.layers = nn.ModuleList([NanbeigeDecoderLayer(config) for _ in range(config.num_hidden_layers)])
440
+ self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
441
+
442
+ self.gradient_checkpointing = False
443
+ # Initialize weights and apply final processing
444
+ self.post_init()
445
+
446
+ def get_input_embeddings(self):
447
+ return self.embed_tokens
448
+
449
+ def set_input_embeddings(self, value):
450
+ self.embed_tokens = value
451
+
452
+ # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
453
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
454
+ # create causal mask
455
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
456
+ combined_attention_mask = None
457
+ if input_shape[-1] > 1:
458
+ combined_attention_mask = _make_causal_mask(
459
+ input_shape,
460
+ inputs_embeds.dtype,
461
+ device=inputs_embeds.device,
462
+ past_key_values_length=past_key_values_length,
463
+ )
464
+
465
+ if attention_mask is not None:
466
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
467
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
468
+ inputs_embeds.device
469
+ )
470
+ combined_attention_mask = (
471
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
472
+ )
473
+
474
+ return combined_attention_mask
475
+
476
+ def forward(
477
+ self,
478
+ input_ids: torch.LongTensor = None,
479
+ attention_mask: Optional[torch.Tensor] = None,
480
+ position_ids: Optional[torch.LongTensor] = None,
481
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
482
+ inputs_embeds: Optional[torch.FloatTensor] = None,
483
+ use_cache: Optional[bool] = None,
484
+ output_attentions: Optional[bool] = None,
485
+ output_hidden_states: Optional[bool] = None,
486
+ return_dict: Optional[bool] = None,
487
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
488
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
489
+ output_hidden_states = (
490
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
491
+ )
492
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
493
+
494
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
495
+
496
+ # retrieve input_ids and inputs_embeds
497
+ if input_ids is not None and inputs_embeds is not None:
498
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
499
+ elif input_ids is not None:
500
+ batch_size, seq_length = input_ids.shape
501
+ elif inputs_embeds is not None:
502
+ batch_size, seq_length, _ = inputs_embeds.shape
503
+ else:
504
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
505
+
506
+ seq_length_with_past = seq_length
507
+ past_key_values_length = 0
508
+
509
+ if past_key_values is not None:
510
+ past_key_values_length = past_key_values[0][0].shape[2]
511
+ seq_length_with_past = seq_length_with_past + past_key_values_length
512
+ else:
513
+ past_key_values = [None for _ in range(len(self.layers))]
514
+
515
+ if position_ids is None:
516
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
517
+ position_ids = torch.arange(
518
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
519
+ )
520
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
521
+ else:
522
+ position_ids = position_ids.view(-1, seq_length).long()
523
+
524
+ if inputs_embeds is None:
525
+ inputs_embeds = self.embed_tokens(input_ids)
526
+ # embed positions
527
+ if attention_mask is None:
528
+ attention_mask = torch.ones(
529
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
530
+ )
531
+ attention_mask = self._prepare_decoder_attention_mask(
532
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
533
+ )
534
+
535
+ hidden_states = inputs_embeds
536
+
537
+ if self.gradient_checkpointing and self.training:
538
+ if use_cache:
539
+ logger.warning_once(
540
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
541
+ )
542
+ use_cache = False
543
+
544
+ # decoder layers
545
+ all_hidden_states = () if output_hidden_states else None
546
+ all_self_attns = () if output_attentions else None
547
+ next_cache = [] if use_cache else None
548
+
549
+ for idx, decoder_layer in enumerate(self.layers):
550
+ if output_hidden_states:
551
+ all_hidden_states += (hidden_states,)
552
+
553
+ past_key_value = past_key_values.pop(0) if past_key_values is not None else None
554
+
555
+ if self.gradient_checkpointing and self.training:
556
+
557
+ def create_custom_forward(module):
558
+ def custom_forward(*inputs):
559
+ # None for past_key_value
560
+ return module(*inputs, output_attentions, None)
561
+
562
+ return custom_forward
563
+
564
+ layer_outputs = torch.utils.checkpoint.checkpoint(
565
+ create_custom_forward(decoder_layer),
566
+ hidden_states,
567
+ attention_mask,
568
+ position_ids,
569
+ None,
570
+ )
571
+ else:
572
+ layer_outputs = decoder_layer(
573
+ hidden_states,
574
+ attention_mask=attention_mask,
575
+ position_ids=position_ids,
576
+ past_key_value=past_key_value,
577
+ output_attentions=output_attentions,
578
+ use_cache=use_cache,
579
+ )
580
+
581
+ hidden_states = layer_outputs[0]
582
+
583
+ if use_cache:
584
+ next_cache.append(layer_outputs[2 if output_attentions else 1])
585
+
586
+ if output_attentions:
587
+ all_self_attns += (layer_outputs[1],)
588
+
589
+ hidden_states = self.norm(hidden_states)
590
+
591
+ # add hidden states from the last decoder layer
592
+ if output_hidden_states:
593
+ all_hidden_states += (hidden_states,)
594
+
595
+ if not return_dict:
596
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
597
+ return BaseModelOutputWithPast(
598
+ last_hidden_state=hidden_states,
599
+ past_key_values=next_cache,
600
+ hidden_states=all_hidden_states,
601
+ attentions=all_self_attns,
602
+ )
603
+
604
+
605
+ class NanbeigeForCausalLM(NanbeigePreTrainedModel):
606
+ def __init__(self, config):
607
+ super().__init__(config)
608
+ self.model = NanbeigeModel(config)
609
+
610
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
611
+
612
+ # Initialize weights and apply final processing
613
+ self.post_init()
614
+
615
+ def get_input_embeddings(self):
616
+ return self.model.embed_tokens
617
+
618
+ def set_input_embeddings(self, value):
619
+ self.model.embed_tokens = value
620
+
621
+ def get_output_embeddings(self):
622
+ return self.lm_head
623
+
624
+ def set_output_embeddings(self, new_embeddings):
625
+ self.lm_head = new_embeddings
626
+
627
+ def set_decoder(self, decoder):
628
+ self.model = decoder
629
+
630
+ def get_decoder(self):
631
+ return self.model
632
+
633
+ def forward(
634
+ self,
635
+ input_ids: torch.LongTensor = None,
636
+ attention_mask: Optional[torch.Tensor] = None,
637
+ position_ids: Optional[torch.LongTensor] = None,
638
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
639
+ inputs_embeds: Optional[torch.FloatTensor] = None,
640
+ labels: Optional[torch.LongTensor] = None,
641
+ use_cache: Optional[bool] = None,
642
+ output_attentions: Optional[bool] = None,
643
+ output_hidden_states: Optional[bool] = None,
644
+ return_dict: Optional[bool] = None,
645
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
646
+
647
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
648
+ output_hidden_states = (
649
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
650
+ )
651
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
652
+
653
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
654
+ outputs = self.model(
655
+ input_ids=input_ids,
656
+ attention_mask=attention_mask,
657
+ position_ids=position_ids,
658
+ past_key_values=past_key_values,
659
+ inputs_embeds=inputs_embeds,
660
+ use_cache=use_cache,
661
+ output_attentions=output_attentions,
662
+ output_hidden_states=output_hidden_states,
663
+ return_dict=return_dict,
664
+ )
665
+
666
+ hidden_states = outputs[0]
667
+ logits = self.lm_head(hidden_states)
668
+
669
+ loss = None
670
+ if labels is not None:
671
+ # Shift so that tokens < n predict n
672
+ shift_logits = logits[..., :-1, :].contiguous()
673
+ shift_labels = labels[..., 1:].contiguous()
674
+ # Flatten the tokens
675
+ loss_fct = CrossEntropyLoss()
676
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
677
+ shift_labels = shift_labels.view(-1)
678
+ # Enable model parallelism
679
+ shift_labels = shift_labels.to(shift_logits.device)
680
+ loss = loss_fct(shift_logits, shift_labels)
681
+
682
+ if not return_dict:
683
+ output = (logits,) + outputs[1:]
684
+ return (loss,) + output if loss is not None else output
685
+
686
+ return CausalLMOutputWithPast(
687
+ loss=loss,
688
+ logits=logits,
689
+ past_key_values=outputs.past_key_values,
690
+ hidden_states=outputs.hidden_states,
691
+ attentions=outputs.attentions,
692
+ )
693
+
694
+ def prepare_inputs_for_generation(
695
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
696
+ ):
697
+ if past_key_values:
698
+ input_ids = input_ids[:, -1:]
699
+
700
+ position_ids = kwargs.get("position_ids", None)
701
+ if attention_mask is not None and position_ids is None:
702
+ # create position_ids on the fly for batch generation
703
+ position_ids = attention_mask.long().cumsum(-1) - 1
704
+ position_ids.masked_fill_(attention_mask == 0, 1)
705
+ if past_key_values:
706
+ position_ids = position_ids[:, -1].unsqueeze(-1)
707
+
708
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
709
+ if inputs_embeds is not None and past_key_values is None:
710
+ model_inputs = {"inputs_embeds": inputs_embeds}
711
+ else:
712
+ model_inputs = {"input_ids": input_ids}
713
+
714
+ model_inputs.update(
715
+ {
716
+ "position_ids": position_ids,
717
+ "past_key_values": past_key_values,
718
+ "use_cache": kwargs.get("use_cache"),
719
+ "attention_mask": attention_mask,
720
+ }
721
+ )
722
+ return model_inputs
723
+
724
+ @staticmethod
725
+ def _reorder_cache(past_key_values, beam_idx):
726
+ reordered_past = ()
727
+ for layer_past in past_key_values:
728
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
729
+ return reordered_past
730
+
731
+ def build_prompt_input(self, tokenizer, query, messages):
732
+ prompt = ""
733
+ for message in messages:
734
+ if message['role'] == 'human':
735
+ prompt += f"""### Human: \n{message['content']}\n\n"""
736
+ elif message['role'] == 'assistant':
737
+ prompt += f"""### Assistant: {message['content']}</s>"""
738
+ elif message['role'] == 'system':
739
+ prompt += f"""### System:{message['content']}\n</s>"""
740
+ prompt += f"""### Human: \n{query}\n\n### Assistant: """
741
+ return tokenizer([prompt], return_tensors="pt")
742
+
743
+ @torch.no_grad()
744
+ def chat(self,
745
+ tokenizer,
746
+ query: str,
747
+ messages: List[dict] = None,
748
+ streamer: Optional[BaseStreamer] = None,
749
+ max_new_tokens: int = 512,
750
+ do_sample: bool = True,
751
+ temperature: float = 0.3,
752
+ top_p: float = 0.9,
753
+ **kwargs):
754
+ if messages is None:
755
+ messages = [{'role': 'system', 'content': NANBEIGE_SYSTEM_PROMPT}]
756
+
757
+ inputs = self.build_prompt_input(tokenizer, query, messages)
758
+ inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
759
+ outputs = self.generate(**inputs,
760
+ streamer=streamer,
761
+ max_new_tokens=max_new_tokens,
762
+ do_sample=do_sample,
763
+ temperature=temperature,
764
+ top_p=top_p,
765
+ **kwargs)
766
+ outputs = outputs[0].cpu().tolist()[len(inputs["input_ids"][0]):]
767
+ response = tokenizer.decode(outputs, skip_special_tokens=True)
768
+ response = response.split("</s>")[0]
769
+ messages.append({'role': 'human', 'content': query})
770
+ messages.append({'role': 'assistant', 'content': response})
771
+ return response, messages
772
+
773
+ @torch.no_grad()
774
+ def stream_chat(self,
775
+ tokenizer,
776
+ query: str,
777
+ messages: List[dict] = None,
778
+ max_new_tokens: int = 1024,
779
+ do_sample: bool = True,
780
+ temperature: float = 0.8,
781
+ top_p: float = 0.8,
782
+ **kwargs):
783
+
784
+ response_queue = queue.Queue(maxsize=20)
785
+ if messages is None:
786
+ messages = [{'role': 'system', 'content': NANBEIGE_SYSTEM_PROMPT}]
787
+
788
+ class ChatStreamer(BaseStreamer):
789
+ def __init__(self, tokenizer) -> None:
790
+ super().__init__()
791
+ self.tokenizer = tokenizer
792
+ self.queue = response_queue
793
+ self.query = query
794
+ self.messages = messages
795
+ self.response = ""
796
+ self.received_inputs = False
797
+ self.queue.put((self.response, messages + [{'role': 'human', 'content': self.query},
798
+ {'role': 'assistant', 'content': self.response}]))
799
+
800
+ def put(self, value):
801
+ if len(value.shape) > 1 and value.shape[0] > 1:
802
+ raise ValueError("ChatStreamer only supports batch size 1")
803
+ elif len(value.shape) > 1:
804
+ value = value[0]
805
+
806
+ if not self.received_inputs:
807
+ # The first received value is input_ids, ignore here
808
+ self.received_inputs = True
809
+ return
810
+
811
+ token = self.tokenizer.decode([value[-1]], skip_special_tokens=True)
812
+ if token.strip() != "</s>":
813
+ self.response = self.response + token
814
+ messages = self.messages + [{'role': 'human', 'content': self.query},
815
+ {'role': 'assistant', 'content': self.response}]
816
+ self.queue.put((self.response, messages))
817
+
818
+ def end(self):
819
+ self.queue.put(None)
820
+
821
+ def stream_task():
822
+ return self.chat(
823
+ tokenizer=tokenizer,
824
+ query=query,
825
+ messages=messages,
826
+ streamer=ChatStreamer(tokenizer=tokenizer),
827
+ max_new_tokens=max_new_tokens,
828
+ do_sample=do_sample,
829
+ temperature=temperature,
830
+ top_p=top_p,
831
+ **kwargs
832
+ )
833
+
834
+ def consumer():
835
+ threading.Thread(target=stream_task).start()
836
+ while True:
837
+ res = response_queue.get()
838
+ if res is None:
839
+ return
840
+ yield res
841
+
842
+ return consumer()
843
+
844
+
845
+ class NanbeigeForSequenceClassification(NanbeigePreTrainedModel):
846
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
847
+
848
+ def __init__(self, config):
849
+ super().__init__(config)
850
+ self.num_labels = config.num_labels
851
+ self.model = NanbeigeModel(config)
852
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
853
+
854
+ # Initialize weights and apply final processing
855
+ self.post_init()
856
+
857
+ def get_input_embeddings(self):
858
+ return self.model.embed_tokens
859
+
860
+ def set_input_embeddings(self, value):
861
+ self.model.embed_tokens = value
862
+
863
+ def forward(
864
+ self,
865
+ input_ids: torch.LongTensor = None,
866
+ attention_mask: Optional[torch.Tensor] = None,
867
+ position_ids: Optional[torch.LongTensor] = None,
868
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
869
+ inputs_embeds: Optional[torch.FloatTensor] = None,
870
+ labels: Optional[torch.LongTensor] = None,
871
+ use_cache: Optional[bool] = None,
872
+ output_attentions: Optional[bool] = None,
873
+ output_hidden_states: Optional[bool] = None,
874
+ return_dict: Optional[bool] = None,
875
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
876
+ r"""
877
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
878
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
879
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
880
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
881
+ """
882
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
883
+
884
+ transformer_outputs = self.model(
885
+ input_ids,
886
+ attention_mask=attention_mask,
887
+ position_ids=position_ids,
888
+ past_key_values=past_key_values,
889
+ inputs_embeds=inputs_embeds,
890
+ use_cache=use_cache,
891
+ output_attentions=output_attentions,
892
+ output_hidden_states=output_hidden_states,
893
+ return_dict=return_dict,
894
+ )
895
+ hidden_states = transformer_outputs[0]
896
+ logits = self.score(hidden_states)
897
+
898
+ if input_ids is not None:
899
+ batch_size = input_ids.shape[0]
900
+ else:
901
+ batch_size = inputs_embeds.shape[0]
902
+
903
+ if self.config.pad_token_id is None and batch_size != 1:
904
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
905
+ if self.config.pad_token_id is None:
906
+ sequence_lengths = -1
907
+ else:
908
+ if input_ids is not None:
909
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
910
+ else:
911
+ sequence_lengths = -1
912
+
913
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
914
+
915
+ loss = None
916
+ if labels is not None:
917
+ labels = labels.to(logits.device)
918
+ if self.config.problem_type is None:
919
+ if self.num_labels == 1:
920
+ self.config.problem_type = "regression"
921
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
922
+ self.config.problem_type = "single_label_classification"
923
+ else:
924
+ self.config.problem_type = "multi_label_classification"
925
+
926
+ if self.config.problem_type == "regression":
927
+ loss_fct = MSELoss()
928
+ if self.num_labels == 1:
929
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
930
+ else:
931
+ loss = loss_fct(pooled_logits, labels)
932
+ elif self.config.problem_type == "single_label_classification":
933
+ loss_fct = CrossEntropyLoss()
934
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
935
+ elif self.config.problem_type == "multi_label_classification":
936
+ loss_fct = BCEWithLogitsLoss()
937
+ loss = loss_fct(pooled_logits, labels)
938
+ if not return_dict:
939
+ output = (pooled_logits,) + transformer_outputs[1:]
940
+ return ((loss,) + output) if loss is not None else output
941
+
942
+ return SequenceClassifierOutputWithPast(
943
+ loss=loss,
944
+ logits=pooled_logits,
945
+ past_key_values=transformer_outputs.past_key_values,
946
+ hidden_states=transformer_outputs.hidden_states,
947
+ attentions=transformer_outputs.attentions,
948
+ )
quantize_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": [
3
+ 4
4
+ ],
5
+ "group_size": [
6
+ 128
7
+ ],
8
+ "damp_percent": [
9
+ 0.1
10
+ ],
11
+ "desc_act": [
12
+ true
13
+ ],
14
+ "sym": true,
15
+ "true_sequential": true
16
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "unk_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "pad_token": "</s>"
24
+ }
tokenization_nanbeige.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023 Nanbeige LLM Lab All Rights Reserved.
2
+
3
+ """Tokenization classes for Nanbeige."""
4
+ import os
5
+ from shutil import copyfile
6
+ from typing import Any, Dict, List, Optional, Tuple
7
+
8
+ import sentencepiece as spm
9
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
10
+ from transformers.utils import logging
11
+
12
+ logger = logging.get_logger(__name__)
13
+
14
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
15
+
16
+ PRETRAINED_VOCAB_FILES_MAP = {
17
+ "vocab_file": {},
18
+ "tokenizer_file": {},
19
+ }
20
+
21
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
22
+
23
+
24
+ class NanbeigeTokenizer(PreTrainedTokenizer):
25
+ """
26
+ Construct a Nanbeige tokenizer. Based on byte-level Byte-Pair-Encoding.
27
+
28
+ Args:
29
+ vocab_file (`str`):
30
+ Path to the vocabulary file.
31
+ """
32
+
33
+ vocab_files_names = VOCAB_FILES_NAMES
34
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
35
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
36
+ model_input_names = ["input_ids", "attention_mask"]
37
+
38
+ def __init__(
39
+ self,
40
+ vocab_file,
41
+ unk_token="<unk>",
42
+ bos_token="<s>",
43
+ eos_token="</s>",
44
+ pad_token=None,
45
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
46
+ add_bos_token=True,
47
+ add_eos_token=False,
48
+ clean_up_tokenization_spaces=False,
49
+ **kwargs,
50
+ ):
51
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
52
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
53
+ self.sp_model.Load(vocab_file)
54
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
55
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
56
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
57
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
58
+ super().__init__(
59
+ bos_token=bos_token,
60
+ eos_token=eos_token,
61
+ unk_token=unk_token,
62
+ pad_token=pad_token,
63
+ add_bos_token=add_bos_token,
64
+ add_eos_token=add_eos_token,
65
+ sp_model_kwargs=self.sp_model_kwargs,
66
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
67
+ **kwargs,
68
+ )
69
+ self.vocab_file = vocab_file
70
+ self.add_bos_token = add_bos_token
71
+ self.add_eos_token = add_eos_token
72
+
73
+ def __getstate__(self):
74
+ state = self.__dict__.copy()
75
+ state["sp_model"] = None
76
+ return state
77
+
78
+ def __setstate__(self, d):
79
+ self.__dict__ = d
80
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
81
+ self.sp_model.Load(self.vocab_file)
82
+
83
+ @property
84
+ def vocab_size(self):
85
+ """Returns vocab size"""
86
+ return self.sp_model.get_piece_size()
87
+
88
+ def get_vocab(self):
89
+ """Returns vocab as a dict"""
90
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
91
+ vocab.update(self.added_tokens_encoder)
92
+ return vocab
93
+
94
+ def _tokenize(self, text):
95
+ """Returns a tokenized string."""
96
+ return self.sp_model.encode(text, out_type=str)
97
+
98
+ def _convert_token_to_id(self, token):
99
+ """Converts a token (str) in an id using the vocab."""
100
+ return self.sp_model.piece_to_id(token)
101
+
102
+ def _convert_id_to_token(self, index):
103
+ """Converts an index (integer) in a token (str) using the vocab."""
104
+ token = self.sp_model.IdToPiece(index)
105
+ return token
106
+
107
+ def convert_tokens_to_string(self, tokens):
108
+ """Converts a sequence of tokens (string) in a single string."""
109
+ current_sub_tokens = []
110
+ out_string = ""
111
+ prev_is_special = False
112
+ for i, token in enumerate(tokens):
113
+ # make sure that special tokens are not decoded using sentencepiece model
114
+ if token in self.all_special_tokens:
115
+ if not prev_is_special and i != 0:
116
+ out_string += " "
117
+ out_string += self.sp_model.decode(current_sub_tokens) + token
118
+ prev_is_special = True
119
+ current_sub_tokens = []
120
+ else:
121
+ current_sub_tokens.append(token)
122
+ prev_is_special = False
123
+ out_string += self.sp_model.decode(current_sub_tokens)
124
+ return out_string
125
+
126
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
127
+ """
128
+ Save the vocabulary and special tokens file to a directory.
129
+
130
+ Args:
131
+ save_directory (`str`):
132
+ The directory in which to save the vocabulary.
133
+
134
+ Returns:
135
+ `Tuple(str)`: Paths to the files saved.
136
+ """
137
+ if not os.path.isdir(save_directory):
138
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
139
+ return
140
+ out_vocab_file = os.path.join(
141
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
142
+ )
143
+
144
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
145
+ copyfile(self.vocab_file, out_vocab_file)
146
+ elif not os.path.isfile(self.vocab_file):
147
+ with open(out_vocab_file, "wb") as fi:
148
+ content_spiece_model = self.sp_model.serialized_model_proto()
149
+ fi.write(content_spiece_model)
150
+
151
+ return (out_vocab_file,)
152
+
153
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
154
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
155
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
156
+
157
+ output = bos_token_id + token_ids_0 + eos_token_id
158
+
159
+ if token_ids_1 is not None:
160
+ output = output + bos_token_id + token_ids_1 + eos_token_id
161
+
162
+ return output
163
+
164
+ def get_special_tokens_mask(
165
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None,
166
+ already_has_special_tokens: bool = False
167
+ ) -> List[int]:
168
+ """
169
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
170
+ special tokens using the tokenizer `prepare_for_model` method.
171
+
172
+ Args:
173
+ token_ids_0 (`List[int]`):
174
+ List of IDs.
175
+ token_ids_1 (`List[int]`, *optional*):
176
+ Optional second list of IDs for sequence pairs.
177
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
178
+ Whether or not the token list is already formatted with special tokens for the model.
179
+
180
+ Returns:
181
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
182
+ """
183
+ if already_has_special_tokens:
184
+ return super().get_special_tokens_mask(
185
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
186
+ )
187
+
188
+ bos_token_id = [1] if self.add_bos_token else []
189
+ eos_token_id = [1] if self.add_eos_token else []
190
+
191
+ if token_ids_1 is None:
192
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
193
+ return (
194
+ bos_token_id
195
+ + ([0] * len(token_ids_0))
196
+ + eos_token_id
197
+ + bos_token_id
198
+ + ([0] * len(token_ids_1))
199
+ + eos_token_id
200
+ )
201
+
202
+ def create_token_type_ids_from_sequences(
203
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
204
+ ) -> List[int]:
205
+ """
206
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
207
+ sequence pair mask has the following format:
208
+
209
+ ```
210
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
211
+ | first sequence | second sequence |
212
+ ```
213
+
214
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
215
+
216
+ Args:
217
+ token_ids_0 (`List[int]`):
218
+ List of ids.
219
+ token_ids_1 (`List[int]`, *optional*):
220
+ Optional second list of IDs for sequence pairs.
221
+
222
+ Returns:
223
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
224
+ """
225
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
226
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
227
+
228
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
229
+
230
+ if token_ids_1 is not None:
231
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
232
+
233
+ return output
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ede13db1d0956ec033608741b0fd83d149a5ec54306af70e2ba829242f75b73b
3
+ size 851705
tokenizer_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": ["tokenization_nanbeige.NanbeigeTokenizer", null]
4
+ },
5
+ "add_bos_token": true,
6
+ "add_eos_token": false,
7
+ "bos_token": {
8
+ "__type": "AddedToken",
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": true,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "clean_up_tokenization_spaces": false,
16
+ "eos_token": {
17
+ "__type": "AddedToken",
18
+ "content": "</s>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "model_max_length": 1000000000000000019884624838656,
25
+ "pad_token": null,
26
+ "sp_model_kwargs": {},
27
+ "tokenizer_class": "NanbeigeTokenizer",
28
+ "unk_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }