TheBloke commited on
Commit
847c57f
1 Parent(s): 82e4b57

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -56
README.md CHANGED
@@ -44,12 +44,18 @@ quantized_by: TheBloke
44
 
45
  This repo contains GPTQ model files for [Mistral AI_'s Mixtral 8X7B v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1).
46
 
 
 
 
 
 
47
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
48
 
49
  <!-- description end -->
50
  <!-- repositories-available start -->
51
  ## Repositories available
52
 
 
53
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ)
54
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
55
  * [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
@@ -72,14 +78,8 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
72
 
73
  GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
74
 
75
- These GPTQ models are known to work in the following inference servers/webuis.
76
-
77
- - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
78
- - [KoboldAI United](https://github.com/henk717/koboldai)
79
- - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
80
- - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
81
 
82
- This may not be a complete list; if you know of others, please let me know!
83
  <!-- README_GPTQ.md-compatible clients end -->
84
 
85
  <!-- README_GPTQ.md-provided-files start -->
@@ -106,13 +106,13 @@ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with T
106
 
107
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
108
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
109
- | main | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 23.81 GB | No | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
110
- | gptq-4bit-128g-actorder_True | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 24.70 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
111
- | gptq-4bit-32g-actorder_True | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 27.42 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
112
- | gptq-3bit--1g-actorder_True | 3 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.01 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
113
- | gptq-3bit-128g-actorder_True | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.85 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
114
- | gptq-8bit--1g-actorder_True | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 47.04 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
115
- | gptq-8bit-128g-actorder_True | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 48.10 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
116
 
117
  <!-- README_GPTQ.md-provided-files end -->
118
 
@@ -186,6 +186,12 @@ Note that using Git with HF repos is strongly discouraged. It will be much slowe
186
  <!-- README_GPTQ.md-text-generation-webui start -->
187
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
188
 
 
 
 
 
 
 
189
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
190
 
191
  It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
@@ -212,50 +218,18 @@ It is strongly recommended to use the text-generation-webui one-click-installers
212
  <!-- README_GPTQ.md-use-from-tgi start -->
213
  ## Serving this model from Text Generation Inference (TGI)
214
 
215
- It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
216
-
217
- Example Docker parameters:
218
-
219
- ```shell
220
- --model-id TheBloke/Mixtral-8x7B-v0.1-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
221
- ```
222
-
223
- Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
224
-
225
- ```shell
226
- pip3 install huggingface-hub
227
- ```
228
-
229
- ```python
230
- from huggingface_hub import InferenceClient
231
-
232
- endpoint_url = "https://your-endpoint-url-here"
233
 
234
- prompt = "Tell me about AI"
235
- prompt_template=f'''{prompt}
236
- '''
237
-
238
- client = InferenceClient(endpoint_url)
239
- response = client.text_generation(prompt,
240
- max_new_tokens=128,
241
- do_sample=True,
242
- temperature=0.7,
243
- top_p=0.95,
244
- top_k=40,
245
- repetition_penalty=1.1)
246
-
247
- print(f"Model output: {response}")
248
- ```
249
  <!-- README_GPTQ.md-use-from-tgi end -->
250
  <!-- README_GPTQ.md-use-from-python start -->
251
  ## Python code example: inference from this GPTQ model
252
 
253
  ### Install the necessary packages
254
 
255
- Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
256
 
257
  ```shell
258
- pip3 install --upgrade transformers optimum
259
  # If using PyTorch 2.1 + CUDA 12.x:
260
  pip3 install --upgrade auto-gptq
261
  # or, if using PyTorch 2.1 + CUDA 11.x:
@@ -268,8 +242,7 @@ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Lik
268
  pip3 uninstall -y auto-gptq
269
  git clone https://github.com/PanQiWei/AutoGPTQ
270
  cd AutoGPTQ
271
- git checkout v0.5.1
272
- pip3 install .
273
  ```
274
 
275
  ### Example Python code
@@ -287,7 +260,8 @@ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
287
 
288
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
289
 
290
- prompt = "Tell me about AI"
 
291
  prompt_template=f'''{prompt}
292
  '''
293
 
@@ -319,11 +293,8 @@ print(pipe(prompt_template)[0]['generated_text'])
319
  <!-- README_GPTQ.md-compatibility start -->
320
  ## Compatibility
321
 
322
- The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
323
-
324
- [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
325
 
326
- For a list of clients/servers, please see "Known compatible clients / servers", above.
327
  <!-- README_GPTQ.md-compatibility end -->
328
 
329
  <!-- footer start -->
 
44
 
45
  This repo contains GPTQ model files for [Mistral AI_'s Mixtral 8X7B v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1).
46
 
47
+ Mixtral GPTQs currently require:
48
+ * Transformers 4.36.0 or later
49
+ * either, AutoGPTQ 0.6 compiled from source, or
50
+ * Transformers 4.37.0.dev0 compiled from Github with: `pip3 install git+https://github.com/huggingface/transformers`
51
+
52
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
53
 
54
  <!-- description end -->
55
  <!-- repositories-available start -->
56
  ## Repositories available
57
 
58
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/mixtral-8x7b-v0.1-AWQ)
59
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ)
60
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GGUF)
61
  * [Mistral AI_'s original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
 
78
 
79
  GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
80
 
81
+ Mixtral GPTQs currently have special requirements - see Description above.
 
 
 
 
 
82
 
 
83
  <!-- README_GPTQ.md-compatible clients end -->
84
 
85
  <!-- README_GPTQ.md-provided-files start -->
 
106
 
107
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
108
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
109
+ | [main](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 23.81 GB | No | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
110
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 24.70 GB | No | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
111
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 27.42 GB | No | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
112
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.01 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
113
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 18.85 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
114
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 47.04 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
115
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Mixtral-8x7B-v0.1-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 48.10 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
116
 
117
  <!-- README_GPTQ.md-provided-files end -->
118
 
 
186
  <!-- README_GPTQ.md-text-generation-webui start -->
187
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
188
 
189
+ **NOTE**: Requires:
190
+
191
+ * Transformers 4.36.0, or Transformers 4.37.0.dev0 from Github
192
+ * Either AutoGPTQ 0.6 compiled from source and `Loader: AutoGPTQ`,
193
+ * or, `Loader: Transformers`, if you installed Transformers from Github: `pip3 install git+https://github.com/huggingface/transformers`
194
+
195
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
196
 
197
  It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
 
218
  <!-- README_GPTQ.md-use-from-tgi start -->
219
  ## Serving this model from Text Generation Inference (TGI)
220
 
221
+ Not currently supported for Mixtral models.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
  <!-- README_GPTQ.md-use-from-tgi end -->
224
  <!-- README_GPTQ.md-use-from-python start -->
225
  ## Python code example: inference from this GPTQ model
226
 
227
  ### Install the necessary packages
228
 
229
+ Requires: Transformers 4.37.0.dev0 from Github, Optimum 1.16.0 or later, and AutoGPTQ 0.5.1 or later.
230
 
231
  ```shell
232
+ pip3 install --upgrade "git+https://github.com/huggingface/transformers" optimum
233
  # If using PyTorch 2.1 + CUDA 12.x:
234
  pip3 install --upgrade auto-gptq
235
  # or, if using PyTorch 2.1 + CUDA 11.x:
 
242
  pip3 uninstall -y auto-gptq
243
  git clone https://github.com/PanQiWei/AutoGPTQ
244
  cd AutoGPTQ
245
+ DISABLE_QIGEN=1 pip3 install .
 
246
  ```
247
 
248
  ### Example Python code
 
260
 
261
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
262
 
263
+ prompt = "Write a story about llamas"
264
+ system_message = "You are a story writing assistant"
265
  prompt_template=f'''{prompt}
266
  '''
267
 
 
293
  <!-- README_GPTQ.md-compatibility start -->
294
  ## Compatibility
295
 
296
+ The files provided are tested to work with AutoGPTQ 0.6 (compiled from source) and Transformers 4.37.0 (installed from Github).
 
 
297
 
 
298
  <!-- README_GPTQ.md-compatibility end -->
299
 
300
  <!-- footer start -->