TheBloke commited on
Commit
962401c
·
1 Parent(s): a0a8532

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +109 -78
README.md CHANGED
@@ -1,7 +1,11 @@
1
  ---
2
  inference: false
3
- license: other
 
 
 
4
  model_type: llama
 
5
  ---
6
 
7
  <!-- header start -->
@@ -21,114 +25,154 @@ model_type: llama
21
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
22
  <!-- header end -->
23
 
24
- # Tap-M's Luna AI Llama2 Uncensored GPTQ
 
 
25
 
26
- These files are GPTQ model files for [Tap-M's Luna AI Llama2 Uncensored](https://huggingface.co/Tap-M/Luna-AI-Llama2-Uncensored).
 
 
 
27
 
28
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
29
 
30
  Many thanks to William Beauchamp from [Chai](https://chai-research.com/) for providing the hardware used to make and upload these files!
31
 
 
 
32
  ## Repositories available
33
 
34
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ)
35
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GGML)
36
- * [Original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Tap-M/Luna-AI-Llama2-Uncensored)
 
 
37
 
 
38
  ## Prompt template: User-Assistant
39
 
40
  ```
41
  USER: {prompt}
42
  ASSISTANT:
 
43
  ```
44
 
45
- ## Provided files
 
 
 
46
 
47
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
48
 
49
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
50
 
51
- | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
52
- | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
53
- | main | 4 | 128 | False | 3.90 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
54
- | gptq-4bit-32g-actorder_True | 4 | 32 | True | 4.28 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
55
- | gptq-4bit-64g-actorder_True | 4 | 64 | True | 4.02 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
56
- | gptq-4bit-128g-actorder_True | 4 | 128 | True | 3.90 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
57
- | gptq-8bit--1g-actorder_True | 8 | None | True | 7.01 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
58
- | gptq-8bit-128g-actorder_False | 8 | 128 | False | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
59
- | gptq-8bit-128g-actorder_True | 8 | 128 | True | 7.16 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
60
- | gptq-8bit-64g-actorder_True | 8 | 64 | True | 7.31 GB | False | AutoGPTQ | 8-bit, with group size 64g and Act Order for maximum inference quality. Poor AutoGPTQ CUDA speed. |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
 
62
  ## How to download from branches
63
 
64
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Luna-AI-Llama2-Uncensored-GPTQ:gptq-4bit-32g-actorder_True`
65
  - With Git, you can clone a branch with:
66
  ```
67
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ`
68
  ```
69
  - In Python Transformers code, the branch is the `revision` parameter; see below.
70
-
 
71
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
72
 
73
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
74
 
75
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
76
 
77
  1. Click the **Model tab**.
78
  2. Under **Download custom model or LoRA**, enter `TheBloke/Luna-AI-Llama2-Uncensored-GPTQ`.
79
  - To download from a specific branch, enter for example `TheBloke/Luna-AI-Llama2-Uncensored-GPTQ:gptq-4bit-32g-actorder_True`
80
  - see Provided Files above for the list of branches for each option.
81
  3. Click **Download**.
82
- 4. The model will start downloading. Once it's finished it will say "Done"
83
  5. In the top left, click the refresh icon next to **Model**.
84
  6. In the **Model** dropdown, choose the model you just downloaded: `Luna-AI-Llama2-Uncensored-GPTQ`
85
  7. The model will automatically load, and is now ready for use!
86
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
87
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
88
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
89
 
 
90
  ## How to use this GPTQ model from Python code
91
 
92
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
 
94
- `GITHUB_ACTIONS=true pip install auto-gptq`
 
 
 
 
95
 
96
- Then try the following example code:
97
 
98
  ```python
99
- from transformers import AutoTokenizer, pipeline, logging
100
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
101
 
102
  model_name_or_path = "TheBloke/Luna-AI-Llama2-Uncensored-GPTQ"
103
- model_basename = "model"
104
-
105
- use_triton = False
 
 
 
106
 
107
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
108
 
109
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
110
- model_basename=model_basename,
111
- use_safetensors=True,
112
- trust_remote_code=False,
113
- device="cuda:0",
114
- use_triton=use_triton,
115
- quantize_config=None)
116
-
117
- """
118
- To download from a specific branch, use the revision parameter, as in this example:
119
-
120
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
121
- revision="gptq-4bit-32g-actorder_True",
122
- model_basename=model_basename,
123
- use_safetensors=True,
124
- trust_remote_code=False,
125
- device="cuda:0",
126
- quantize_config=None)
127
- """
128
-
129
  prompt = "Tell me about AI"
130
  prompt_template=f'''USER: {prompt}
131
  ASSISTANT:
 
132
  '''
133
 
134
  print("\n\n*** Generate:")
@@ -139,9 +183,6 @@ print(tokenizer.decode(output[0]))
139
 
140
  # Inference can also be done using transformers' pipeline
141
 
142
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
143
- logging.set_verbosity(logging.CRITICAL)
144
-
145
  print("*** Pipeline:")
146
  pipe = pipeline(
147
  "text-generation",
@@ -155,12 +196,17 @@ pipe = pipeline(
155
 
156
  print(pipe(prompt_template)[0]['generated_text'])
157
  ```
 
158
 
 
159
  ## Compatibility
160
 
161
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
162
 
163
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
164
 
165
  <!-- footer start -->
166
  <!-- 200823 -->
@@ -185,7 +231,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
185
 
186
  **Special thanks to**: Aemon Algiz.
187
 
188
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
189
 
190
 
191
  Thank you to all my generous patrons and donaters!
@@ -201,16 +247,17 @@ And thank you again to a16z for their generous grant.
201
 
202
  <h2>Model Description</h2>
203
  <p>“Luna AI Llama2 Uncensored” is a Llama2 based Chat model <br />fine-tuned on over 40,000 long form chat discussions <br />
204
- This model was fine-tuned by Tap, the creator of Luna AI. <br />
205
- The result is an enhanced Llama2 7b model that rivals ChatGPT in performance <br />across a variety of tasks.</p>
206
- <p>This model stands out for its long responses, low hallucination rate, and absence of censorship mechanisms. <br /></p>
207
-
208
  <h2>Model Training</h2>
209
  <p>The fine-tuning process was performed on an 8x a100 80GB machine.
210
- <br />The model was trained almost entirely on synthetic outputs.
211
- <br />This includes data from diverse sources which we included to create our custom dataset, it includes multiple rounds of chats between Human & AI.
212
  </p>
213
 
 
 
 
 
214
  <h2>Prompt Format</h2>
215
  <p>The model follows the Vicuna 1.1/ OpenChat format:</p>
216
 
@@ -221,10 +268,6 @@ ASSISTANT: Of course! Friends are always here for each other. What do you like t
221
 
222
  ```
223
 
224
-
225
- <h2>Future Plans</h2>
226
- <p>The model is currently being uploaded in FP16 format, <br />and there are plans to convert the model to GGML and GPTQ 4bit quantizations.</p>
227
-
228
  <h2>Benchmark Results</h2>
229
 
230
  ||||||
@@ -232,22 +275,10 @@ ASSISTANT: Of course! Friends are always here for each other. What do you like t
232
  |Task|Version| Metric |Value |Stderr|
233
  |arc_challenge|0|acc_norm|0.5512|0.0146|
234
  |hellaswag|0||||
235
- |mmlu|0||||
236
  |truthfulqa_mc|1|mc2|0.4716|0.0155|
237
  |Average|-|-|0.5114|0.0150|
238
 
239
- <h2>Ethical considerations</h2>
240
- <p>The data used to train the model is collected from various sources, mostly from the Web. <br />
241
- As such, it contains offensive, harmful and biased content. <br />We thus expect the model to exhibit such biases from the training data.</p>
242
-
243
- <h2>Human life</h2>
244
- <p>The model is not intended to inform decisions about matters central to human life, <br />and should not be used in such a way.</p>
245
-
246
- <h2>Risks and harms</h2>
247
- <p>Risks and harms of large language models include the generation of harmful, offensive or biased content. <br />
248
- These models are often prone to generating incorrect information, sometimes referred to as hallucinations.
249
- <br /> We do not expect our model to be an exception in this regard.</p>
250
-
251
  </div>
252
 
253
 
 
1
  ---
2
  inference: false
3
+ license: llama2
4
+ model_creator: Tap
5
+ model_link: https://huggingface.co/Tap-M/Luna-AI-Llama2-Uncensored
6
+ model_name: Luna AI Llama2 Uncensored
7
  model_type: llama
8
+ quantized_by: TheBloke
9
  ---
10
 
11
  <!-- header start -->
 
25
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
26
  <!-- header end -->
27
 
28
+ # Luna AI Llama2 Uncensored - GPTQ
29
+ - Model creator: [Tap](https://huggingface.co/Tap-M)
30
+ - Original model: [Luna AI Llama2 Uncensored](https://huggingface.co/Tap-M/Luna-AI-Llama2-Uncensored)
31
 
32
+ <!-- description start -->
33
+ ## Description
34
+
35
+ This repo contains GPTQ model files for [Tap-M's Luna AI Llama2 Uncensored](https://huggingface.co/Tap-M/Luna-AI-Llama2-Uncensored).
36
 
37
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
38
 
39
  Many thanks to William Beauchamp from [Chai](https://chai-research.com/) for providing the hardware used to make and upload these files!
40
 
41
+ <!-- description end -->
42
+ <!-- repositories-available start -->
43
  ## Repositories available
44
 
45
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ)
46
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GGUF)
47
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GGML)
48
+ * [Tap's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Tap-M/Luna-AI-Llama2-Uncensored)
49
+ <!-- repositories-available end -->
50
 
51
+ <!-- prompt-template start -->
52
  ## Prompt template: User-Assistant
53
 
54
  ```
55
  USER: {prompt}
56
  ASSISTANT:
57
+
58
  ```
59
 
60
+ <!-- prompt-template end -->
61
+
62
+ <!-- README_GPTQ.md-provided-files start -->
63
+ ## Provided files and GPTQ parameters
64
 
65
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
66
 
67
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
68
 
69
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
70
+
71
+ <details>
72
+ <summary>Explanation of GPTQ parameters</summary>
73
+
74
+ - Bits: The bit size of the quantised model.
75
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
76
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
77
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
78
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
79
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
80
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
81
+
82
+ </details>
83
+
84
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
85
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
86
+ | [main](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ/tree/main) | 4 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
87
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
88
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
89
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
90
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
91
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
92
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
93
+ | [gptq-8bit-64g-actorder_True](https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ/tree/gptq-8bit-64g-actorder_True) | 8 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.31 GB | No | 8-bit, with group size 64g and Act Order for even higher inference quality. Poor AutoGPTQ CUDA speed. |
94
+
95
+ <!-- README_GPTQ.md-provided-files end -->
96
 
97
+ <!-- README_GPTQ.md-download-from-branches start -->
98
  ## How to download from branches
99
 
100
  - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Luna-AI-Llama2-Uncensored-GPTQ:gptq-4bit-32g-actorder_True`
101
  - With Git, you can clone a branch with:
102
  ```
103
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ
104
  ```
105
  - In Python Transformers code, the branch is the `revision` parameter; see below.
106
+ <!-- README_GPTQ.md-download-from-branches end -->
107
+ <!-- README_GPTQ.md-text-generation-webui start -->
108
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
109
 
110
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
111
 
112
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
113
 
114
  1. Click the **Model tab**.
115
  2. Under **Download custom model or LoRA**, enter `TheBloke/Luna-AI-Llama2-Uncensored-GPTQ`.
116
  - To download from a specific branch, enter for example `TheBloke/Luna-AI-Llama2-Uncensored-GPTQ:gptq-4bit-32g-actorder_True`
117
  - see Provided Files above for the list of branches for each option.
118
  3. Click **Download**.
119
+ 4. The model will start downloading. Once it's finished it will say "Done".
120
  5. In the top left, click the refresh icon next to **Model**.
121
  6. In the **Model** dropdown, choose the model you just downloaded: `Luna-AI-Llama2-Uncensored-GPTQ`
122
  7. The model will automatically load, and is now ready for use!
123
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
124
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
125
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
126
+ <!-- README_GPTQ.md-text-generation-webui end -->
127
 
128
+ <!-- README_GPTQ.md-use-from-python start -->
129
  ## How to use this GPTQ model from Python code
130
 
131
+ ### Install the necessary packages
132
+
133
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
134
+
135
+ ```shell
136
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
137
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
138
+ ```
139
+
140
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
141
+
142
+ ```shell
143
+ pip3 uninstall -y auto-gptq
144
+ git clone https://github.com/PanQiWei/AutoGPTQ
145
+ cd AutoGPTQ
146
+ pip3 install .
147
+ ```
148
+
149
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
150
 
151
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
152
+ ```shell
153
+ pip3 uninstall -y transformers
154
+ pip3 install git+https://github.com/huggingface/transformers.git
155
+ ```
156
 
157
+ ### You can then use the following code
158
 
159
  ```python
160
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
161
 
162
  model_name_or_path = "TheBloke/Luna-AI-Llama2-Uncensored-GPTQ"
163
+ # To use a different branch, change revision
164
+ # For example: revision="gptq-4bit-32g-actorder_True"
165
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
166
+ torch_dtype=torch.float16,
167
+ device_map="auto",
168
+ revision="main")
169
 
170
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  prompt = "Tell me about AI"
173
  prompt_template=f'''USER: {prompt}
174
  ASSISTANT:
175
+
176
  '''
177
 
178
  print("\n\n*** Generate:")
 
183
 
184
  # Inference can also be done using transformers' pipeline
185
 
 
 
 
186
  print("*** Pipeline:")
187
  pipe = pipeline(
188
  "text-generation",
 
196
 
197
  print(pipe(prompt_template)[0]['generated_text'])
198
  ```
199
+ <!-- README_GPTQ.md-use-from-python end -->
200
 
201
+ <!-- README_GPTQ.md-compatibility start -->
202
  ## Compatibility
203
 
204
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
205
 
206
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
207
+
208
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
209
+ <!-- README_GPTQ.md-compatibility end -->
210
 
211
  <!-- footer start -->
212
  <!-- 200823 -->
 
231
 
232
  **Special thanks to**: Aemon Algiz.
233
 
234
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
235
 
236
 
237
  Thank you to all my generous patrons and donaters!
 
247
 
248
  <h2>Model Description</h2>
249
  <p>“Luna AI Llama2 Uncensored” is a Llama2 based Chat model <br />fine-tuned on over 40,000 long form chat discussions <br />
250
+ This model was fine-tuned by Tap, the creator of Luna AI. <br />
251
+
 
 
252
  <h2>Model Training</h2>
253
  <p>The fine-tuning process was performed on an 8x a100 80GB machine.
254
+ <br />The model was trained on synthetic outputs which include multiple rounds of chats between Human & AI.
 
255
  </p>
256
 
257
+ <a rel="noopener nofollow" href="https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GPTQ">4bit GPTQ Version provided by @TheBloke - for GPU inference</a><br />
258
+ <a rel="noopener nofollow" href="https://huggingface.co/TheBloke/Luna-AI-Llama2-Uncensored-GGML">GGML Version provided by @TheBloke - For CPU inference</a>
259
+
260
+
261
  <h2>Prompt Format</h2>
262
  <p>The model follows the Vicuna 1.1/ OpenChat format:</p>
263
 
 
268
 
269
  ```
270
 
 
 
 
 
271
  <h2>Benchmark Results</h2>
272
 
273
  ||||||
 
275
  |Task|Version| Metric |Value |Stderr|
276
  |arc_challenge|0|acc_norm|0.5512|0.0146|
277
  |hellaswag|0||||
278
+ |mmlu|1|acc_norm|0.46521|0.036|
279
  |truthfulqa_mc|1|mc2|0.4716|0.0155|
280
  |Average|-|-|0.5114|0.0150|
281
 
 
 
 
 
 
 
 
 
 
 
 
 
282
  </div>
283
 
284