TheBloke commited on
Commit
a9121c1
1 Parent(s): a162296

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -55
README.md CHANGED
@@ -35,18 +35,24 @@ quantized_by: TheBloke
35
  - Model creator: [Open-Orca](https://huggingface.co/Open-Orca)
36
  - Original model: [LlongOrca 13B 16K](https://huggingface.co/Open-Orca/LlongOrca-13B-16k)
37
 
 
38
  ## Description
39
 
40
  This repo contains GPTQ model files for [Open-Orca's LlongOrca 13B 16K](https://huggingface.co/Open-Orca/LlongOrca-13B-16k).
41
 
42
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
43
 
 
 
44
  ## Repositories available
45
 
46
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ)
47
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GGML)
 
48
  * [Open-Orca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Open-Orca/LlongOrca-13B-16k)
 
49
 
 
50
  ## Prompt template: ChatML
51
 
52
  ```
@@ -55,22 +61,34 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
55
  <|im_start|>user
56
  {prompt}<|im_end|>
57
  <|im_start|>assistant
 
58
  ```
59
 
 
 
 
 
 
 
 
 
 
 
 
60
  ## Provided files and GPTQ parameters
61
 
62
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
63
 
64
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
65
 
66
- All GPTQ files are made with AutoGPTQ.
67
 
68
  <details>
69
  <summary>Explanation of GPTQ parameters</summary>
70
 
71
  - Bits: The bit size of the quantised model.
72
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
73
- - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have issues with models that use Act Order plus Group Size.
74
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
75
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
76
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
@@ -80,126 +98,133 @@ All GPTQ files are made with AutoGPTQ.
80
 
81
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
82
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
83
- | [main](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
84
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
85
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
86
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
87
- | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
88
- | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
 
 
89
 
 
90
  ## How to download from branches
91
 
92
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/LlongOrca-13B-16K-GPTQ:gptq-4bit-32g-actorder_True`
93
  - With Git, you can clone a branch with:
94
  ```
95
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ
96
  ```
97
  - In Python Transformers code, the branch is the `revision` parameter; see below.
98
-
 
99
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
100
 
101
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
102
 
103
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
104
 
105
  1. Click the **Model tab**.
106
  2. Under **Download custom model or LoRA**, enter `TheBloke/LlongOrca-13B-16K-GPTQ`.
107
- - To download from a specific branch, enter for example `TheBloke/LlongOrca-13B-16K-GPTQ:gptq-4bit-32g-actorder_True`
108
  - see Provided Files above for the list of branches for each option.
109
  3. Click **Download**.
110
- 4. The model will start downloading. Once it's finished it will say "Done"
111
  5. In the top left, click the refresh icon next to **Model**.
112
  6. In the **Model** dropdown, choose the model you just downloaded: `LlongOrca-13B-16K-GPTQ`
113
  7. The model will automatically load, and is now ready for use!
114
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
115
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
116
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
117
 
 
118
  ## How to use this GPTQ model from Python code
119
 
120
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) 0.3.1 or later installed:
121
 
122
- ```
123
- pip3 install auto-gptq
124
- ```
125
 
126
- If you have problems installing AutoGPTQ, please build from source instead:
 
 
127
  ```
 
 
 
 
128
  pip3 uninstall -y auto-gptq
129
  git clone https://github.com/PanQiWei/AutoGPTQ
130
  cd AutoGPTQ
131
  pip3 install .
132
  ```
133
 
134
- Then try the following example code:
 
 
 
 
 
 
 
 
135
 
136
  ```python
137
- from transformers import AutoTokenizer, pipeline, logging
138
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
139
 
140
  model_name_or_path = "TheBloke/LlongOrca-13B-16K-GPTQ"
141
-
142
- use_triton = False
 
 
 
 
143
 
144
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
145
 
146
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
147
- use_safetensors=True,
148
- trust_remote_code=False,
149
- device="cuda:0",
150
- use_triton=use_triton,
151
- quantize_config=None)
152
-
153
- """
154
- # To download from a specific branch, use the revision parameter, as in this example:
155
- # Note that `revision` requires AutoGPTQ 0.3.1 or later!
156
-
157
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
158
- revision="gptq-4bit-32g-actorder_True",
159
- use_safetensors=True,
160
- trust_remote_code=False,
161
- device="cuda:0",
162
- quantize_config=None)
163
- """
164
-
165
  prompt = "Tell me about AI"
166
  prompt_template=f'''<|im_start|>system
167
  {system_message}<|im_end|>
168
  <|im_start|>user
169
  {prompt}<|im_end|>
170
  <|im_start|>assistant
 
171
  '''
172
 
173
  print("\n\n*** Generate:")
174
 
175
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
176
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
177
  print(tokenizer.decode(output[0]))
178
 
179
  # Inference can also be done using transformers' pipeline
180
 
181
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
182
- logging.set_verbosity(logging.CRITICAL)
183
-
184
  print("*** Pipeline:")
185
  pipe = pipeline(
186
  "text-generation",
187
  model=model,
188
  tokenizer=tokenizer,
189
  max_new_tokens=512,
 
190
  temperature=0.7,
191
  top_p=0.95,
192
- repetition_penalty=1.15
 
193
  )
194
 
195
  print(pipe(prompt_template)[0]['generated_text'])
196
  ```
 
197
 
 
198
  ## Compatibility
199
 
200
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
201
 
202
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
203
 
204
  <!-- footer start -->
205
  <!-- 200823 -->
@@ -209,10 +234,12 @@ For further support, and discussions on these models and AI in general, join us
209
 
210
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
211
 
212
- ## Thanks, and how to contribute.
213
 
214
  Thanks to the [chirper.ai](https://chirper.ai) team!
215
 
 
 
216
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
217
 
218
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -224,7 +251,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
224
 
225
  **Special thanks to**: Aemon Algiz.
226
 
227
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
228
 
229
 
230
  Thank you to all my generous patrons and donaters!
@@ -330,7 +357,7 @@ Commodity cost was ~$300.
330
  # Citation
331
 
332
  ```bibtex
333
- @software{lian2023llongorca13b,
334
  title = {LlongOrca13B: Llama2-13B Model Instruct-tuned for Long Context on Filtered OpenOrcaV1 GPT-4 Dataset},
335
  author = {Alpin Dale and Wing Lian and Bleys Goodson and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
336
  year = {2023},
 
35
  - Model creator: [Open-Orca](https://huggingface.co/Open-Orca)
36
  - Original model: [LlongOrca 13B 16K](https://huggingface.co/Open-Orca/LlongOrca-13B-16k)
37
 
38
+ <!-- description start -->
39
  ## Description
40
 
41
  This repo contains GPTQ model files for [Open-Orca's LlongOrca 13B 16K](https://huggingface.co/Open-Orca/LlongOrca-13B-16k).
42
 
43
  Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
44
 
45
+ <!-- description end -->
46
+ <!-- repositories-available start -->
47
  ## Repositories available
48
 
49
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ)
50
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GGUF)
51
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GGML)
52
  * [Open-Orca's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Open-Orca/LlongOrca-13B-16k)
53
+ <!-- repositories-available end -->
54
 
55
+ <!-- prompt-template start -->
56
  ## Prompt template: ChatML
57
 
58
  ```
 
61
  <|im_start|>user
62
  {prompt}<|im_end|>
63
  <|im_start|>assistant
64
+
65
  ```
66
 
67
+ <!-- prompt-template end -->
68
+ <!-- licensing start -->
69
+ ## Licensing
70
+
71
+ The creator of the source model has listed its license as `llama2`, and this quantization has therefore used that same license.
72
+
73
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
74
+
75
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Open-Orca's LlongOrca 13B 16K](https://huggingface.co/Open-Orca/LlongOrca-13B-16k).
76
+ <!-- licensing end -->
77
+ <!-- README_GPTQ.md-provided-files start -->
78
  ## Provided files and GPTQ parameters
79
 
80
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
81
 
82
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
83
 
84
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
85
 
86
  <details>
87
  <summary>Explanation of GPTQ parameters</summary>
88
 
89
  - Bits: The bit size of the quantised model.
90
  - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
91
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
92
  - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
93
  - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
94
  - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
 
98
 
99
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
100
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
101
+ | [main](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.26 GB | Yes | 4-bit, without Act Order and group size 128g. |
102
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
103
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
104
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
105
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
106
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
107
+
108
+ <!-- README_GPTQ.md-provided-files end -->
109
 
110
+ <!-- README_GPTQ.md-download-from-branches start -->
111
  ## How to download from branches
112
 
113
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/LlongOrca-13B-16K-GPTQ:main`
114
  - With Git, you can clone a branch with:
115
  ```
116
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/LlongOrca-13B-16K-GPTQ
117
  ```
118
  - In Python Transformers code, the branch is the `revision` parameter; see below.
119
+ <!-- README_GPTQ.md-download-from-branches end -->
120
+ <!-- README_GPTQ.md-text-generation-webui start -->
121
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
122
 
123
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
124
 
125
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
126
 
127
  1. Click the **Model tab**.
128
  2. Under **Download custom model or LoRA**, enter `TheBloke/LlongOrca-13B-16K-GPTQ`.
129
+ - To download from a specific branch, enter for example `TheBloke/LlongOrca-13B-16K-GPTQ:main`
130
  - see Provided Files above for the list of branches for each option.
131
  3. Click **Download**.
132
+ 4. The model will start downloading. Once it's finished it will say "Done".
133
  5. In the top left, click the refresh icon next to **Model**.
134
  6. In the **Model** dropdown, choose the model you just downloaded: `LlongOrca-13B-16K-GPTQ`
135
  7. The model will automatically load, and is now ready for use!
136
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
137
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
138
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
139
+ <!-- README_GPTQ.md-text-generation-webui end -->
140
 
141
+ <!-- README_GPTQ.md-use-from-python start -->
142
  ## How to use this GPTQ model from Python code
143
 
144
+ ### Install the necessary packages
145
 
146
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
 
 
147
 
148
+ ```shell
149
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
150
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
151
  ```
152
+
153
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
154
+
155
+ ```shell
156
  pip3 uninstall -y auto-gptq
157
  git clone https://github.com/PanQiWei/AutoGPTQ
158
  cd AutoGPTQ
159
  pip3 install .
160
  ```
161
 
162
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
163
+
164
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
165
+ ```shell
166
+ pip3 uninstall -y transformers
167
+ pip3 install git+https://github.com/huggingface/transformers.git
168
+ ```
169
+
170
+ ### You can then use the following code
171
 
172
  ```python
173
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
174
 
175
  model_name_or_path = "TheBloke/LlongOrca-13B-16K-GPTQ"
176
+ # To use a different branch, change revision
177
+ # For example: revision="main"
178
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
179
+ device_map="auto",
180
+ trust_remote_code=False,
181
+ revision="main")
182
 
183
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
184
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
  prompt = "Tell me about AI"
186
  prompt_template=f'''<|im_start|>system
187
  {system_message}<|im_end|>
188
  <|im_start|>user
189
  {prompt}<|im_end|>
190
  <|im_start|>assistant
191
+
192
  '''
193
 
194
  print("\n\n*** Generate:")
195
 
196
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
197
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
198
  print(tokenizer.decode(output[0]))
199
 
200
  # Inference can also be done using transformers' pipeline
201
 
 
 
 
202
  print("*** Pipeline:")
203
  pipe = pipeline(
204
  "text-generation",
205
  model=model,
206
  tokenizer=tokenizer,
207
  max_new_tokens=512,
208
+ do_sample=True,
209
  temperature=0.7,
210
  top_p=0.95,
211
+ top_k=40,
212
+ repetition_penalty=1.1
213
  )
214
 
215
  print(pipe(prompt_template)[0]['generated_text'])
216
  ```
217
+ <!-- README_GPTQ.md-use-from-python end -->
218
 
219
+ <!-- README_GPTQ.md-compatibility start -->
220
  ## Compatibility
221
 
222
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
223
 
224
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
225
+
226
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
227
+ <!-- README_GPTQ.md-compatibility end -->
228
 
229
  <!-- footer start -->
230
  <!-- 200823 -->
 
234
 
235
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
236
 
237
+ ## Thanks, and how to contribute
238
 
239
  Thanks to the [chirper.ai](https://chirper.ai) team!
240
 
241
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
242
+
243
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
244
 
245
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
251
 
252
  **Special thanks to**: Aemon Algiz.
253
 
254
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
255
 
256
 
257
  Thank you to all my generous patrons and donaters!
 
357
  # Citation
358
 
359
  ```bibtex
360
+ @software{dale2023llongorca13b,
361
  title = {LlongOrca13B: Llama2-13B Model Instruct-tuned for Long Context on Filtered OpenOrcaV1 GPT-4 Dataset},
362
  author = {Alpin Dale and Wing Lian and Bleys Goodson and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
363
  year = {2023},