File size: 13,137 Bytes
dce1080 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
datasets:
- OpenAssistant/oasst1
inference: false
language:
- en
- de
- es
- fr
license: other
model_creator: Jordan Clive
model_link: https://huggingface.co/jordiclive/Llama-2-70b-oasst-1-200
model_name: Open-Assistant Llama2 70B SFT OASST
model_type: llama
quantized_by: TheBloke
tags:
- sft
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# Open-Assistant Llama2 70B SFT OASST - GGML
- Model creator: [Jordan Clive](https://huggingface.co/jordiclive)
- Original model: [Open-Assistant Llama2 70B SFT OASST](https://huggingface.co/jordiclive/Llama-2-70b-oasst-1-200)
## Description
This repo contains GGML format model files for [Jordan Clive's Open-Assistant Llama2 70B SFT OASST](https://huggingface.co/jordiclive/Llama-2-70b-oasst-1-200).
GPU acceleration is now available for Llama 2 70B GGML files, with both CUDA (NVidia) and Metal (macOS). The following clients/libraries are known to work with these files, including with GPU acceleration:
* [llama.cpp](https://github.com/ggerganov/llama.cpp), commit `e76d630` and later.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), version 1.37 and later. A powerful GGML web UI, especially good for story telling.
* [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration for both Windows and macOS. Use 0.1.11 or later for macOS GPU acceleration with 70B models.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), version 0.1.77 and later. A Python library with LangChain support, and OpenAI-compatible API server.
* [ctransformers](https://github.com/marella/ctransformers), version 0.2.15 and later. A Python library with LangChain support, and OpenAI-compatible API server.
## Repositories available
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML)
* [Jordan Clive's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jordiclive/Llama-2-70b-oasst-1-200)
## Prompt template: OpenAssistant
```
<|prompter|>{prompt}<|endoftext|><|assistant|>
```
<!-- compatibility_ggml start -->
## Compatibility
### Requires llama.cpp [commit `e76d630`](https://github.com/ggerganov/llama.cpp/commit/e76d630df17e235e6b9ef416c45996765d2e36fb) or later.
Or one of the other tools and libraries listed above.
To use in llama.cpp, you must add `-gqa 8` argument.
For other UIs and libraries, please check the docs.
## Explanation of the new k-quant methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_ggml end -->
## Provided files
| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [llama-2-70b-oasst-1-200.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML/blob/main/llama-2-70b-oasst-1-200.ggmlv3.q2_K.bin) | q2_K | 2 | 28.96 GB| 31.46 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
| [llama-2-70b-oasst-1-200.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML/blob/main/llama-2-70b-oasst-1-200.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 36.49 GB| 38.99 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| [llama-2-70b-oasst-1-200.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML/blob/main/llama-2-70b-oasst-1-200.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 33.39 GB| 35.89 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
| [llama-2-70b-oasst-1-200.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML/blob/main/llama-2-70b-oasst-1-200.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 30.09 GB| 32.59 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
| [llama-2-70b-oasst-1-200.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML/blob/main/llama-2-70b-oasst-1-200.ggmlv3.q4_0.bin) | q4_0 | 4 | 38.80 GB| 41.30 GB | Original quant method, 4-bit. |
| [llama-2-70b-oasst-1-200.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML/blob/main/llama-2-70b-oasst-1-200.ggmlv3.q4_1.bin) | q4_1 | 4 | 43.12 GB| 45.62 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
| [llama-2-70b-oasst-1-200.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML/blob/main/llama-2-70b-oasst-1-200.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 41.69 GB| 44.19 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
| [llama-2-70b-oasst-1-200.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML/blob/main/llama-2-70b-oasst-1-200.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 39.18 GB| 41.68 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
| [llama-2-70b-oasst-1-200.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML/blob/main/llama-2-70b-oasst-1-200.ggmlv3.q5_0.bin) | q5_0 | 5 | 47.43 GB| 49.93 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
| [llama-2-70b-oasst-1-200.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML/blob/main/llama-2-70b-oasst-1-200.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 49.03 GB| 51.53 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
| [llama-2-70b-oasst-1-200.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/Llama-2-70B-OASST-1-200-GGML/blob/main/llama-2-70b-oasst-1-200.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 47.74 GB| 50.24 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
## How to run in `llama.cpp`
I use the following command line; adjust for your tastes and needs:
```
./main -t 10 -ngl 40 -gqa 8 -m llama-2-70b-oasst-1-200.ggmlv3.q4_K_M.bin --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|prompter|>Write a story about llamas<|endoftext|><|assistant|>"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If you are fully offloading the model to GPU, use `-t 1`
Change `-ngl 40` to the number of GPU layers you have VRAM for. Use `-ngl 100` to offload all layers to VRAM - if you have a 48GB card, or 2 x 24GB, or similar. Otherwise you can partially offload as many as you have VRAM for, on one or more GPUs.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
Remember the `-gqa 8` argument, required for Llama 70B models.
Change `-c 4096` to the desired sequence length for this model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
**Patreon special mentions**: Willem Michiel, Ajan Kanaga, Cory Kujawski, Alps Aficionado, Nikolai Manek, Jonathan Leane, Stanislav Ovsiannikov, Michael Levine, Luke Pendergrass, Sid, K, Gabriel Tamborski, Clay Pascal, Kalila, William Sang, Will Dee, Pieter, Nathan LeClaire, ya boyyy, David Flickinger, vamX, Derek Yates, Fen Risland, Jeffrey Morgan, webtim, Daniel P. Andersen, Chadd, Edmond Seymore, Pyrater, Olusegun Samson, Lone Striker, biorpg, alfie_i, Mano Prime, Chris Smitley, Dave, zynix, Trenton Dambrowitz, Johann-Peter Hartmann, Magnesian, Spencer Kim, John Detwiler, Iucharbius, Gabriel Puliatti, LangChain4j, Luke @flexchar, Vadim, Rishabh Srivastava, Preetika Verma, Ai Maven, Femi Adebogun, WelcomeToTheClub, Leonard Tan, Imad Khwaja, Steven Wood, Stefan Sabev, Sebastain Graf, usrbinkat, Dan Guido, Sam, Eugene Pentland, Mandus, transmissions 11, Slarti, Karl Bernard, Spiking Neurons AB, Artur Olbinski, Joseph William Delisle, ReadyPlayerEmma, Olakabola, Asp the Wyvern, Space Cruiser, Matthew Berman, Randy H, subjectnull, danny, John Villwock, Illia Dulskyi, Rainer Wilmers, theTransient, Pierre Kircher, Alexandros Triantafyllidis, Viktor Bowallius, terasurfer, Deep Realms, SuperWojo, senxiiz, Oscar Rangel, Alex, Stephen Murray, Talal Aujan, Raven Klaugh, Sean Connelly, Raymond Fosdick, Fred von Graf, chris gileta, Junyu Yang, Elle
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: Jordan Clive's Open-Assistant Llama2 70B SFT OASST
# Open-Assistant Llama2 70B SFT OASST
This model is a fine-tuning of [Llama2 70B](https://huggingface.co/meta-llama/Llama-2-70b-hf) LLM.
It was trained on a mixture of OASST top-1 threads.
## Model Details
- **Finetuned from:** [Llama2 70B](https://huggingface.co/meta-llama/Llama-2-70b-hf)
- **Model type:** Causal decoder-only transformer language model
- **Language:** English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish);
- **License:** Apache 2.0
- **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord)
## Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `</s>` token.
Input prompt example:
```
<|prompter|>What is a meme, and what's the history behind this word?</s><|assistant|>
```
The input ends with the `<|assistant|>` token to signal that the model should
start generating the assistant reply.
|