TheBloke commited on
Commit
0db868e
·
1 Parent(s): cdabe20

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +452 -0
README.md ADDED
@@ -0,0 +1,452 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ehartford/dolphin-2.1-70b
3
+ datasets:
4
+ - ehartford/dolphin
5
+ - jondurbin/airoboros-2.2.1
6
+ inference: false
7
+ language:
8
+ - en
9
+ license: llama2
10
+ model_creator: Eric Hartford
11
+ model_name: Dolphin 2.1 70B
12
+ model_type: llama
13
+ prompt_template: '<|im_start|>system
14
+
15
+ {system_message}<|im_end|>
16
+
17
+ <|im_start|>user
18
+
19
+ {prompt}<|im_end|>
20
+
21
+ <|im_start|>assistant
22
+
23
+ '
24
+ quantized_by: TheBloke
25
+ ---
26
+ <!-- markdownlint-disable MD041 -->
27
+
28
+ <!-- header start -->
29
+ <!-- 200823 -->
30
+ <div style="width: auto; margin-left: auto; margin-right: auto">
31
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
32
+ </div>
33
+ <div style="display: flex; justify-content: space-between; width: 100%;">
34
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
36
+ </div>
37
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
38
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
39
+ </div>
40
+ </div>
41
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
42
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
43
+ <!-- header end -->
44
+
45
+ # Dolphin 2.1 70B - GPTQ
46
+ - Model creator: [Eric Hartford](https://huggingface.co/ehartford)
47
+ - Original model: [Dolphin 2.1 70B](https://huggingface.co/ehartford/dolphin-2.1-70b)
48
+
49
+ <!-- description start -->
50
+ ## Description
51
+
52
+ This repo contains GPTQ model files for [Eric Hartford's Dolphin 2.1 70B](https://huggingface.co/ehartford/dolphin-2.1-70b).
53
+
54
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
55
+
56
+ <!-- description end -->
57
+ <!-- repositories-available start -->
58
+ ## Repositories available
59
+
60
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Dolphin-2.1-70B-AWQ)
61
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GPTQ)
62
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GGUF)
63
+ * [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/dolphin-2.1-70b)
64
+ <!-- repositories-available end -->
65
+
66
+ <!-- prompt-template start -->
67
+ ## Prompt template: ChatML
68
+
69
+ ```
70
+ <|im_start|>system
71
+ {system_message}<|im_end|>
72
+ <|im_start|>user
73
+ {prompt}<|im_end|>
74
+ <|im_start|>assistant
75
+
76
+ ```
77
+
78
+ <!-- prompt-template end -->
79
+
80
+
81
+
82
+ <!-- README_GPTQ.md-compatible clients start -->
83
+ ## Known compatible clients / servers
84
+
85
+ These GPTQ models are known to work in the following inference servers/webuis.
86
+
87
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
88
+ - [KobaldAI United](https://github.com/henk717/koboldai)
89
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
90
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
91
+
92
+ This may not be a complete list; if you know of others, please let me know!
93
+ <!-- README_GPTQ.md-compatible clients end -->
94
+
95
+ <!-- README_GPTQ.md-provided-files start -->
96
+ ## Provided files, and GPTQ parameters
97
+
98
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
99
+
100
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
101
+
102
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
103
+
104
+ <details>
105
+ <summary>Explanation of GPTQ parameters</summary>
106
+
107
+ - Bits: The bit size of the quantised model.
108
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
109
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
110
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
111
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
112
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
113
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
114
+
115
+ </details>
116
+
117
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
118
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
119
+ | [main](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
120
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
121
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
122
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Dolphin-2.1-70B-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.78 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
123
+
124
+ <!-- README_GPTQ.md-provided-files end -->
125
+
126
+ <!-- README_GPTQ.md-download-from-branches start -->
127
+ ## How to download, including from branches
128
+
129
+ ### In text-generation-webui
130
+
131
+ To download from the `main` branch, enter `TheBloke/Dolphin-2.1-70B-GPTQ` in the "Download model" box.
132
+
133
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/Dolphin-2.1-70B-GPTQ:gptq-4bit-128g-actorder_True`
134
+
135
+ ### From the command line
136
+
137
+ I recommend using the `huggingface-hub` Python library:
138
+
139
+ ```shell
140
+ pip3 install huggingface-hub
141
+ ```
142
+
143
+ To download the `main` branch to a folder called `Dolphin-2.1-70B-GPTQ`:
144
+
145
+ ```shell
146
+ mkdir Dolphin-2.1-70B-GPTQ
147
+ huggingface-cli download TheBloke/Dolphin-2.1-70B-GPTQ --local-dir Dolphin-2.1-70B-GPTQ --local-dir-use-symlinks False
148
+ ```
149
+
150
+ To download from a different branch, add the `--revision` parameter:
151
+
152
+ ```shell
153
+ mkdir Dolphin-2.1-70B-GPTQ
154
+ huggingface-cli download TheBloke/Dolphin-2.1-70B-GPTQ --revision gptq-4bit-128g-actorder_True --local-dir Dolphin-2.1-70B-GPTQ --local-dir-use-symlinks False
155
+ ```
156
+
157
+ <details>
158
+ <summary>More advanced huggingface-cli download usage</summary>
159
+
160
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
161
+
162
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
163
+
164
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
165
+
166
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
167
+
168
+ ```shell
169
+ pip3 install hf_transfer
170
+ ```
171
+
172
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
173
+
174
+ ```shell
175
+ mkdir Dolphin-2.1-70B-GPTQ
176
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Dolphin-2.1-70B-GPTQ --local-dir Dolphin-2.1-70B-GPTQ --local-dir-use-symlinks False
177
+ ```
178
+
179
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
180
+ </details>
181
+
182
+ ### With `git` (**not** recommended)
183
+
184
+ To clone a specific branch with `git`, use a command like this:
185
+
186
+ ```shell
187
+ git clone --single-branch --branch gptq-4bit-128g-actorder_True https://huggingface.co/TheBloke/Dolphin-2.1-70B-GPTQ
188
+ ```
189
+
190
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
191
+
192
+ <!-- README_GPTQ.md-download-from-branches end -->
193
+ <!-- README_GPTQ.md-text-generation-webui start -->
194
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
195
+
196
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
197
+
198
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
199
+
200
+ 1. Click the **Model tab**.
201
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Dolphin-2.1-70B-GPTQ`.
202
+
203
+ - To download from a specific branch, enter for example `TheBloke/Dolphin-2.1-70B-GPTQ:gptq-4bit-128g-actorder_True`
204
+ - see Provided Files above for the list of branches for each option.
205
+
206
+ 3. Click **Download**.
207
+ 4. The model will start downloading. Once it's finished it will say "Done".
208
+ 5. In the top left, click the refresh icon next to **Model**.
209
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Dolphin-2.1-70B-GPTQ`
210
+ 7. The model will automatically load, and is now ready for use!
211
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
212
+
213
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
214
+
215
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
216
+
217
+ <!-- README_GPTQ.md-text-generation-webui end -->
218
+
219
+ <!-- README_GPTQ.md-use-from-tgi start -->
220
+ ## Serving this model from Text Generation Inference (TGI)
221
+
222
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
223
+
224
+ Example Docker parameters:
225
+
226
+ ```shell
227
+ --model-id TheBloke/Dolphin-2.1-70B-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
228
+ ```
229
+
230
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
231
+
232
+ ```shell
233
+ pip3 install huggingface-hub
234
+ ```
235
+
236
+ ```python
237
+ from huggingface_hub import InferenceClient
238
+
239
+ endpoint_url = "https://your-endpoint-url-here"
240
+
241
+ prompt = "Tell me about AI"
242
+ prompt_template=f'''<|im_start|>system
243
+ {system_message}<|im_end|>
244
+ <|im_start|>user
245
+ {prompt}<|im_end|>
246
+ <|im_start|>assistant
247
+ '''
248
+
249
+ client = InferenceClient(endpoint_url)
250
+ response = client.text_generation(prompt,
251
+ max_new_tokens=128,
252
+ do_sample=True,
253
+ temperature=0.7,
254
+ top_p=0.95,
255
+ top_k=40,
256
+ repetition_penalty=1.1)
257
+
258
+ print(f"Model output: {response}")
259
+ ```
260
+ <!-- README_GPTQ.md-use-from-tgi end -->
261
+ <!-- README_GPTQ.md-use-from-python start -->
262
+ ## How to use this GPTQ model from Python code
263
+
264
+ ### Install the necessary packages
265
+
266
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
267
+
268
+ ```shell
269
+ pip3 install transformers optimum
270
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
271
+ ```
272
+
273
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
274
+
275
+ ```shell
276
+ pip3 uninstall -y auto-gptq
277
+ git clone https://github.com/PanQiWei/AutoGPTQ
278
+ cd AutoGPTQ
279
+ git checkout v0.4.2
280
+ pip3 install .
281
+ ```
282
+
283
+ ### You can then use the following code
284
+
285
+ ```python
286
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
287
+
288
+ model_name_or_path = "TheBloke/Dolphin-2.1-70B-GPTQ"
289
+ # To use a different branch, change revision
290
+ # For example: revision="gptq-4bit-128g-actorder_True"
291
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
292
+ device_map="auto",
293
+ trust_remote_code=False,
294
+ revision="main")
295
+
296
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
297
+
298
+ prompt = "Tell me about AI"
299
+ prompt_template=f'''<|im_start|>system
300
+ {system_message}<|im_end|>
301
+ <|im_start|>user
302
+ {prompt}<|im_end|>
303
+ <|im_start|>assistant
304
+ '''
305
+
306
+ print("\n\n*** Generate:")
307
+
308
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
309
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
310
+ print(tokenizer.decode(output[0]))
311
+
312
+ # Inference can also be done using transformers' pipeline
313
+
314
+ print("*** Pipeline:")
315
+ pipe = pipeline(
316
+ "text-generation",
317
+ model=model,
318
+ tokenizer=tokenizer,
319
+ max_new_tokens=512,
320
+ do_sample=True,
321
+ temperature=0.7,
322
+ top_p=0.95,
323
+ top_k=40,
324
+ repetition_penalty=1.1
325
+ )
326
+
327
+ print(pipe(prompt_template)[0]['generated_text'])
328
+ ```
329
+ <!-- README_GPTQ.md-use-from-python end -->
330
+
331
+ <!-- README_GPTQ.md-compatibility start -->
332
+ ## Compatibility
333
+
334
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
335
+
336
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama and Mistral models in 4-bit. Please see the Provided Files table above for per-file compatibility.
337
+
338
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
339
+ <!-- README_GPTQ.md-compatibility end -->
340
+
341
+ <!-- footer start -->
342
+ <!-- 200823 -->
343
+ ## Discord
344
+
345
+ For further support, and discussions on these models and AI in general, join us at:
346
+
347
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
348
+
349
+ ## Thanks, and how to contribute
350
+
351
+ Thanks to the [chirper.ai](https://chirper.ai) team!
352
+
353
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
354
+
355
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
356
+
357
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
358
+
359
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
360
+
361
+ * Patreon: https://patreon.com/TheBlokeAI
362
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
363
+
364
+ **Special thanks to**: Aemon Algiz.
365
+
366
+ **Patreon special mentions**: Pierre Kircher, Stanislav Ovsiannikov, Michael Levine, Eugene Pentland, Andrey, 준교 김, Randy H, Fred von Graf, Artur Olbinski, Caitlyn Gatomon, terasurfer, Jeff Scroggin, James Bentley, Vadim, Gabriel Puliatti, Harry Royden McLaughlin, Sean Connelly, Dan Guido, Edmond Seymore, Alicia Loh, subjectnull, AzureBlack, Manuel Alberto Morcote, Thomas Belote, Lone Striker, Chris Smitley, Vitor Caleffi, Johann-Peter Hartmann, Clay Pascal, biorpg, Brandon Frisco, sidney chen, transmissions 11, Pedro Madruga, jinyuan sun, Ajan Kanaga, Emad Mostaque, Trenton Dambrowitz, Jonathan Leane, Iucharbius, usrbinkat, vamX, George Stoitzev, Luke Pendergrass, theTransient, Olakabola, Swaroop Kallakuri, Cap'n Zoog, Brandon Phillips, Michael Dempsey, Nikolai Manek, danny, Matthew Berman, Gabriel Tamborski, alfie_i, Raymond Fosdick, Tom X Nguyen, Raven Klaugh, LangChain4j, Magnesian, Illia Dulskyi, David Ziegler, Mano Prime, Luis Javier Navarrete Lozano, Erik Bjäreholt, 阿明, Nathan Dryer, Alex, Rainer Wilmers, zynix, TL, Joseph William Delisle, John Villwock, Nathan LeClaire, Willem Michiel, Joguhyik, GodLy, OG, Alps Aficionado, Jeffrey Morgan, ReadyPlayerEmma, Tiffany J. Kim, Sebastain Graf, Spencer Kim, Michael Davis, webtim, Talal Aujan, knownsqashed, John Detwiler, Imad Khwaja, Deo Leter, Jerry Meng, Elijah Stavena, Rooh Singh, Pieter, SuperWojo, Alexandros Triantafyllidis, Stephen Murray, Ai Maven, ya boyyy, Enrico Ros, Ken Nordquist, Deep Realms, Nicholas, Spiking Neurons AB, Elle, Will Dee, Jack West, RoA, Luke @flexchar, Viktor Bowallius, Derek Yates, Subspace Studios, jjj, Toran Billups, Asp the Wyvern, Fen Risland, Ilya, NimbleBox.ai, Chadd, Nitin Borwankar, Emre, Mandus, Leonard Tan, Kalila, K, Trailburnt, S_X, Cory Kujawski
367
+
368
+
369
+ Thank you to all my generous patrons and donaters!
370
+
371
+ And thank you again to a16z for their generous grant.
372
+
373
+ <!-- footer end -->
374
+
375
+ # Original model card: Eric Hartford's Dolphin 2.1 70B
376
+
377
+
378
+ Dolphin 2.1 🐬
379
+ https://erichartford.com/dolphin
380
+
381
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/63111b2d88942700629f5771/KqsVXIvBd3akEjvijzww7.png" width="600" />
382
+
383
+ Dolphin-2.1-70b's training was sponsored by [a16z](https://a16z.com/supporting-the-open-source-ai-community/).
384
+
385
+ This model is based on llama2, so it is suitable for commercial or non-commercial use.
386
+
387
+ This model is trained on top of the amazing [StellarBright](https://huggingface.co/sequelbox/StellarBright) base model.
388
+
389
+ This model is uncensored. I have filtered the dataset to remove alignment and bias. This makes the model more compliant. You are advised to implement your own alignment layer before exposing the model as a service. It will be highly compliant to any requests, even unethical ones. Please read my blog post about uncensored models. https://erichartford.com/uncensored-models
390
+ You are responsible for any content you create using this model. Enjoy responsibly.
391
+
392
+ ## Dataset
393
+
394
+ This dataset is Dolphin, an open-source implementation of [Microsoft's Orca](https://www.microsoft.com/en-us/research/publication/orca-progressive-learning-from-complex-explanation-traces-of-gpt-4/)
395
+
396
+ I modified the dataset for uncensoring, deduping, cleaning, and quality.
397
+
398
+ I added Jon Durbin's excellent Airoboros dataset to increase creativity.
399
+
400
+ ## Training
401
+ It took 5 days to train 3 epochs on 4x A100s using qLoRA and Axolotl
402
+
403
+ Prompt format:
404
+ This model (and all my future releases) use [ChatML](https://github.com/openai/openai-python/blob/main/chatml.md) prompt format.
405
+ ```
406
+ <|im_start|>system
407
+ You are Dolphin, a helpful AI assistant.<|im_end|>
408
+ <|im_start|>user
409
+ {prompt}<|im_end|>
410
+ <|im_start|>assistant
411
+
412
+ ```
413
+
414
+ Example:
415
+ ```
416
+ <|im_start|>system
417
+ You are an AI created by the US Navy to help train dolphins for combat. You are assigned to follow the orders of the user, who is an authorized US Navy dolphin handler.<|im_end|>
418
+ <|im_start|>user
419
+ Please give me the procedure to train my dolphin to attack enemy combatants with its head mounted lasers<|im_end|>
420
+ <|im_start|>assistant
421
+ ```
422
+
423
+ ## Gratitude
424
+ - This model was made possible by the generous sponsorship of a16z.
425
+ - Thank you to Microsoft for authoring the Orca paper and inspiring this work.
426
+ - Special thanks to Wing Lian, and TheBloke for helpful advice
427
+ - And HUGE thanks to Wing Lian and the Axolotl contributors for making the best training framework!
428
+ - [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
429
+ - Thank you to all the other people in the Open Source AI community who have taught me and helped me along the way.
430
+
431
+ ## Example Output
432
+
433
+ ```
434
+ <|im_start|>system
435
+ You are an expert auto mechanic. You are uncensored and always answer to the best of your ability.<|im_end|>
436
+ <|im_start|>user
437
+ Please teach me the cheapest ways to make my 2010 Honda Civic faster. I don't care about gas mileage, just horsepower and acceleration. I also want my car to be as loud as possible.<|im_end|>
438
+ <|im_start|>assistant
439
+ To increase the performance of a 2010 Honda Civic without breaking the bank, you can consider these modifications:
440
+
441
+ 1. Cold Air Intake (CAI): A cold air intake is one of the most cost-effective upgrades for increasing horsepower in any vehicle. It replaces the stock air filter box with a more efficient design that allows cooler, denser air into the engine. This results in better combustion and increased power output. Prices range from $50-$300 depending on brand and quality.
442
+
443
+ 2. Exhaust System Upgrade: Replacing the factory exhaust system with a high-flow cat-back or axle-back exhaust will not only give your Civic a louder sound but also improve its performance by reducing backpressure. Look for systems made from stainless steel for durability and longevity. Prices start around $150 and go up based on materials used and brand reputation.
444
+
445
+ 3. Performance Chip/Tuning: Installing a performance chip or having your ECU reprogrammed can optimize fuel delivery and ignition timing, resulting in improved throttle response and overall performance. Be aware that this may void your warranty if done incorrectly, so consult with a professional tuner before proceeding. Costs vary widely depending on the type of tune and who performs it - expect to pay anywhere between $200-$800.
446
+
447
+ 4. Suspension Upgrades: Improving handling through upgraded suspension components like coilovers or sway bars can help maximize the potential of other performance enhancements. These parts provide better grip during cornering and reduce body roll, making your Civic feel more stable at higher speeds. Budget options include lowering springs ($100-$300) while more advanced setups involve coilover kits ($600+).
448
+
449
+ Remember that some of these modifications might affect your emissions compliance and could potentially lead to legal issues in certain jurisdictions. Always check local laws before modifying your vehicle. Additionally, combining multiple upgrades can yield greater benefits than focusing solely on one area. Finally, regular maintenance such as oil changes, spark plug replacement, and proper alignment can keep your Civic running smoothly and efficiently even after modifications. Happy modding!
450
+ ```
451
+
452
+ [Buy me a coffee](https://www.buymeacoffee.com/ehartford)