Upload README.md
Browse files
README.md
CHANGED
@@ -45,9 +45,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
|
|
45 |
<!-- repositories-available start -->
|
46 |
## Repositories available
|
47 |
|
48 |
-
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-
|
49 |
-
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-
|
50 |
-
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-
|
51 |
* [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
|
52 |
<!-- repositories-available end -->
|
53 |
|
@@ -72,7 +72,7 @@ Multiple quantisation parameters are provided, to allow you to choose the best o
|
|
72 |
|
73 |
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
|
74 |
|
75 |
-
All GPTQ files are made with AutoGPTQ.
|
76 |
|
77 |
<details>
|
78 |
<summary>Explanation of GPTQ parameters</summary>
|
@@ -89,22 +89,22 @@ All GPTQ files are made with AutoGPTQ.
|
|
89 |
|
90 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
91 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
92 |
-
| main | 4 | 128 | No | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
|
93 |
-
| gptq-4bit-32g-actorder_True | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
|
94 |
-
| gptq-4bit-64g-actorder_True | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
95 |
-
| gptq-4bit-128g-actorder_True | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
96 |
-
| gptq-8bit--1g-actorder_True | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
|
97 |
-
| gptq-8bit-128g-actorder_True | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
|
98 |
|
99 |
<!-- README_GPTQ.md-provided-files end -->
|
100 |
|
101 |
<!-- README_GPTQ.md-download-from-branches start -->
|
102 |
## How to download from branches
|
103 |
|
104 |
-
- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/CodeLlama-13B-
|
105 |
- With Git, you can clone a branch with:
|
106 |
```
|
107 |
-
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/CodeLlama-13B-
|
108 |
```
|
109 |
- In Python Transformers code, the branch is the `revision` parameter; see below.
|
110 |
<!-- README_GPTQ.md-download-from-branches end -->
|
@@ -116,16 +116,16 @@ Please make sure you're using the latest version of [text-generation-webui](http
|
|
116 |
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
|
117 |
|
118 |
1. Click the **Model tab**.
|
119 |
-
2. Under **Download custom model or LoRA**, enter `TheBloke/CodeLlama-13B-
|
120 |
-
- To download from a specific branch, enter for example `TheBloke/CodeLlama-13B-
|
121 |
- see Provided Files above for the list of branches for each option.
|
122 |
3. Click **Download**.
|
123 |
4. The model will start downloading. Once it's finished it will say "Done".
|
124 |
5. In the top left, click the refresh icon next to **Model**.
|
125 |
-
6. In the **Model** dropdown, choose the model you just downloaded: `CodeLlama-13B-
|
126 |
7. The model will automatically load, and is now ready for use!
|
127 |
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
|
128 |
-
* Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
|
129 |
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
|
130 |
<!-- README_GPTQ.md-text-generation-webui end -->
|
131 |
|
@@ -163,7 +163,7 @@ pip3 install git+https://github.com/huggingface/transformers.git
|
|
163 |
```python
|
164 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
165 |
|
166 |
-
model_name_or_path = "TheBloke/CodeLlama-13B-
|
167 |
# To use a different branch, change revision
|
168 |
# For example: revision="gptq-4bit-32g-actorder_True"
|
169 |
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
@@ -238,7 +238,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
|
|
238 |
|
239 |
**Special thanks to**: Aemon Algiz.
|
240 |
|
241 |
-
**Patreon special mentions**:
|
242 |
|
243 |
|
244 |
Thank you to all my generous patrons and donaters!
|
|
|
45 |
<!-- repositories-available start -->
|
46 |
## Repositories available
|
47 |
|
48 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ)
|
49 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF)
|
50 |
+
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGML)
|
51 |
* [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
|
52 |
<!-- repositories-available end -->
|
53 |
|
|
|
72 |
|
73 |
Each separate quant is in a different branch. See below for instructions on fetching from different branches.
|
74 |
|
75 |
+
All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
|
76 |
|
77 |
<details>
|
78 |
<summary>Explanation of GPTQ parameters</summary>
|
|
|
89 |
|
90 |
| Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
|
91 |
| ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
|
92 |
+
| [main](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ/tree/main) | 4 | 128 | No | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.26 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
|
93 |
+
| [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 8.00 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
|
94 |
+
| [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.51 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
95 |
+
| [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 7.26 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
|
96 |
+
| [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.36 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
|
97 |
+
| [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [Evol Instruct Code](https://huggingface.co/datasets/nickrosh/Evol-Instruct-Code-80k-v1) | 8192 | 13.65 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. Poor AutoGPTQ CUDA speed. |
|
98 |
|
99 |
<!-- README_GPTQ.md-provided-files end -->
|
100 |
|
101 |
<!-- README_GPTQ.md-download-from-branches start -->
|
102 |
## How to download from branches
|
103 |
|
104 |
+
- In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ:gptq-4bit-32g-actorder_True`
|
105 |
- With Git, you can clone a branch with:
|
106 |
```
|
107 |
+
git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ
|
108 |
```
|
109 |
- In Python Transformers code, the branch is the `revision` parameter; see below.
|
110 |
<!-- README_GPTQ.md-download-from-branches end -->
|
|
|
116 |
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
|
117 |
|
118 |
1. Click the **Model tab**.
|
119 |
+
2. Under **Download custom model or LoRA**, enter `TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ`.
|
120 |
+
- To download from a specific branch, enter for example `TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ:gptq-4bit-32g-actorder_True`
|
121 |
- see Provided Files above for the list of branches for each option.
|
122 |
3. Click **Download**.
|
123 |
4. The model will start downloading. Once it's finished it will say "Done".
|
124 |
5. In the top left, click the refresh icon next to **Model**.
|
125 |
+
6. In the **Model** dropdown, choose the model you just downloaded: `CodeLlama-13B-oasst-sft-v10-GPTQ`
|
126 |
7. The model will automatically load, and is now ready for use!
|
127 |
8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
|
128 |
+
* Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
|
129 |
9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
|
130 |
<!-- README_GPTQ.md-text-generation-webui end -->
|
131 |
|
|
|
163 |
```python
|
164 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
165 |
|
166 |
+
model_name_or_path = "TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ"
|
167 |
# To use a different branch, change revision
|
168 |
# For example: revision="gptq-4bit-32g-actorder_True"
|
169 |
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
|
|
|
238 |
|
239 |
**Special thanks to**: Aemon Algiz.
|
240 |
|
241 |
+
**Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
|
242 |
|
243 |
|
244 |
Thank you to all my generous patrons and donaters!
|