TheBloke commited on
Commit
a94ef54
·
1 Parent(s): 77be514

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +589 -0
README.md ADDED
@@ -0,0 +1,589 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: perlthoughts/Chupacabra-7B-v2
3
+ inference: false
4
+ license: apache-2.0
5
+ model_creator: Ray Hernandez
6
+ model_name: Chupacabra 7B V2
7
+ model_type: mistral
8
+ prompt_template: '### System:
9
+
10
+ {system_message}
11
+
12
+
13
+ ### User:
14
+
15
+ {prompt}
16
+
17
+
18
+ ### Assistant:
19
+
20
+ '
21
+ quantized_by: TheBloke
22
+ ---
23
+ <!-- markdownlint-disable MD041 -->
24
+
25
+ <!-- header start -->
26
+ <!-- 200823 -->
27
+ <div style="width: auto; margin-left: auto; margin-right: auto">
28
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
29
+ </div>
30
+ <div style="display: flex; justify-content: space-between; width: 100%;">
31
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
32
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
33
+ </div>
34
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
35
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
36
+ </div>
37
+ </div>
38
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
39
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
40
+ <!-- header end -->
41
+
42
+ # Chupacabra 7B V2 - AWQ
43
+ - Model creator: [Ray Hernandez](https://huggingface.co/perlthoughts)
44
+ - Original model: [Chupacabra 7B V2](https://huggingface.co/perlthoughts/Chupacabra-7B-v2)
45
+
46
+ <!-- description start -->
47
+ ## Description
48
+
49
+ This repo contains AWQ model files for [Ray Hernandez's Chupacabra 7B V2](https://huggingface.co/perlthoughts/Chupacabra-7B-v2).
50
+
51
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
52
+
53
+
54
+ ### About AWQ
55
+
56
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
57
+
58
+ It is supported by:
59
+
60
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
61
+ - [vLLM](https://github.com/vllm-project/vllm) - Llama and Mistral models only
62
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
63
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
64
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
65
+
66
+ <!-- description end -->
67
+ <!-- repositories-available start -->
68
+ ## Repositories available
69
+
70
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Chupacabra-7B-v2-AWQ)
71
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Chupacabra-7B-v2-GPTQ)
72
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Chupacabra-7B-v2-GGUF)
73
+ * [Ray Hernandez's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/perlthoughts/Chupacabra-7B-v2)
74
+ <!-- repositories-available end -->
75
+
76
+ <!-- prompt-template start -->
77
+ ## Prompt template: Orca-Hashes
78
+
79
+ ```
80
+ ### System:
81
+ {system_message}
82
+
83
+ ### User:
84
+ {prompt}
85
+
86
+ ### Assistant:
87
+
88
+ ```
89
+
90
+ <!-- prompt-template end -->
91
+
92
+
93
+ <!-- README_AWQ.md-provided-files start -->
94
+ ## Provided files, and AWQ parameters
95
+
96
+ I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
97
+
98
+ Models are released as sharded safetensors files.
99
+
100
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
101
+ | ------ | ---- | -- | ----------- | ------- | ---- |
102
+ | [main](https://huggingface.co/TheBloke/Chupacabra-7B-v2-AWQ/tree/main) | 4 | 128 | [open-instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.15 GB
103
+
104
+ <!-- README_AWQ.md-provided-files end -->
105
+
106
+ <!-- README_AWQ.md-text-generation-webui start -->
107
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
108
+
109
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
110
+
111
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
112
+
113
+ 1. Click the **Model tab**.
114
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/Chupacabra-7B-v2-AWQ`.
115
+ 3. Click **Download**.
116
+ 4. The model will start downloading. Once it's finished it will say "Done".
117
+ 5. In the top left, click the refresh icon next to **Model**.
118
+ 6. In the **Model** dropdown, choose the model you just downloaded: `Chupacabra-7B-v2-AWQ`
119
+ 7. Select **Loader: AutoAWQ**.
120
+ 8. Click Load, and the model will load and is now ready for use.
121
+ 9. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
122
+ 10. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
123
+ <!-- README_AWQ.md-text-generation-webui end -->
124
+
125
+ <!-- README_AWQ.md-use-from-vllm start -->
126
+ ## Multi-user inference server: vLLM
127
+
128
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
129
+
130
+ - Please ensure you are using vLLM version 0.2 or later.
131
+ - When using vLLM as a server, pass the `--quantization awq` parameter.
132
+
133
+ For example:
134
+
135
+ ```shell
136
+ python3 -m vllm.entrypoints.api_server --model TheBloke/Chupacabra-7B-v2-AWQ --quantization awq --dtype auto
137
+ ```
138
+
139
+ - When using vLLM from Python code, again set `quantization=awq`.
140
+
141
+ For example:
142
+
143
+ ```python
144
+ from vllm import LLM, SamplingParams
145
+
146
+ prompts = [
147
+ "Tell me about AI",
148
+ "Write a story about llamas",
149
+ "What is 291 - 150?",
150
+ "How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
151
+ ]
152
+ prompt_template=f'''### System:
153
+ {system_message}
154
+
155
+ ### User:
156
+ {prompt}
157
+
158
+ ### Assistant:
159
+ '''
160
+
161
+ prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
162
+
163
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
164
+
165
+ llm = LLM(model="TheBloke/Chupacabra-7B-v2-AWQ", quantization="awq", dtype="auto")
166
+
167
+ outputs = llm.generate(prompts, sampling_params)
168
+
169
+ # Print the outputs.
170
+ for output in outputs:
171
+ prompt = output.prompt
172
+ generated_text = output.outputs[0].text
173
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
174
+ ```
175
+ <!-- README_AWQ.md-use-from-vllm start -->
176
+
177
+ <!-- README_AWQ.md-use-from-tgi start -->
178
+ ## Multi-user inference server: Hugging Face Text Generation Inference (TGI)
179
+
180
+ Use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
181
+
182
+ Example Docker parameters:
183
+
184
+ ```shell
185
+ --model-id TheBloke/Chupacabra-7B-v2-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
186
+ ```
187
+
188
+ Example Python code for interfacing with TGI (requires [huggingface-hub](https://github.com/huggingface/huggingface_hub) 0.17.0 or later):
189
+
190
+ ```shell
191
+ pip3 install huggingface-hub
192
+ ```
193
+
194
+ ```python
195
+ from huggingface_hub import InferenceClient
196
+
197
+ endpoint_url = "https://your-endpoint-url-here"
198
+
199
+ prompt = "Tell me about AI"
200
+ prompt_template=f'''### System:
201
+ {system_message}
202
+
203
+ ### User:
204
+ {prompt}
205
+
206
+ ### Assistant:
207
+ '''
208
+
209
+ client = InferenceClient(endpoint_url)
210
+ response = client.text_generation(prompt,
211
+ max_new_tokens=128,
212
+ do_sample=True,
213
+ temperature=0.7,
214
+ top_p=0.95,
215
+ top_k=40,
216
+ repetition_penalty=1.1)
217
+
218
+ print(f"Model output: ", response)
219
+ ```
220
+ <!-- README_AWQ.md-use-from-tgi end -->
221
+
222
+ <!-- README_AWQ.md-use-from-python start -->
223
+ ## Inference from Python code using Transformers
224
+
225
+ ### Install the necessary packages
226
+
227
+ - Requires: [Transformers](https://huggingface.co/docs/transformers) 4.35.0 or later.
228
+ - Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.6 or later.
229
+
230
+ ```shell
231
+ pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
232
+ ```
233
+
234
+ Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
235
+
236
+ If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
237
+
238
+ ```shell
239
+ pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
240
+ ```
241
+
242
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
243
+
244
+ ```shell
245
+ pip3 uninstall -y autoawq
246
+ git clone https://github.com/casper-hansen/AutoAWQ
247
+ cd AutoAWQ
248
+ pip3 install .
249
+ ```
250
+
251
+ ### Transformers example code (requires Transformers 4.35.0 and later)
252
+
253
+ ```python
254
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
255
+
256
+ model_name_or_path = "TheBloke/Chupacabra-7B-v2-AWQ"
257
+
258
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
259
+ model = AutoModelForCausalLM.from_pretrained(
260
+ model_name_or_path,
261
+ low_cpu_mem_usage=True,
262
+ device_map="cuda:0"
263
+ )
264
+
265
+ # Using the text streamer to stream output one token at a time
266
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
267
+
268
+ prompt = "Tell me about AI"
269
+ prompt_template=f'''### System:
270
+ {system_message}
271
+
272
+ ### User:
273
+ {prompt}
274
+
275
+ ### Assistant:
276
+ '''
277
+
278
+ # Convert prompt to tokens
279
+ tokens = tokenizer(
280
+ prompt_template,
281
+ return_tensors='pt'
282
+ ).input_ids.cuda()
283
+
284
+ generation_params = {
285
+ "do_sample": True,
286
+ "temperature": 0.7,
287
+ "top_p": 0.95,
288
+ "top_k": 40,
289
+ "max_new_tokens": 512,
290
+ "repetition_penalty": 1.1
291
+ }
292
+
293
+ # Generate streamed output, visible one token at a time
294
+ generation_output = model.generate(
295
+ tokens,
296
+ streamer=streamer,
297
+ **generation_params
298
+ )
299
+
300
+ # Generation without a streamer, which will include the prompt in the output
301
+ generation_output = model.generate(
302
+ tokens,
303
+ **generation_params
304
+ )
305
+
306
+ # Get the tokens from the output, decode them, print them
307
+ token_output = generation_output[0]
308
+ text_output = tokenizer.decode(token_output)
309
+ print("model.generate output: ", text_output)
310
+
311
+ # Inference is also possible via Transformers' pipeline
312
+ from transformers import pipeline
313
+
314
+ pipe = pipeline(
315
+ "text-generation",
316
+ model=model,
317
+ tokenizer=tokenizer,
318
+ **generation_params
319
+ )
320
+
321
+ pipe_output = pipe(prompt_template)[0]['generated_text']
322
+ print("pipeline output: ", pipe_output)
323
+
324
+ ```
325
+ <!-- README_AWQ.md-use-from-python end -->
326
+
327
+ <!-- README_AWQ.md-compatibility start -->
328
+ ## Compatibility
329
+
330
+ The files provided are tested to work with:
331
+
332
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui) using `Loader: AutoAWQ`.
333
+ - [vLLM](https://github.com/vllm-project/vllm) version 0.2.0 and later.
334
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) version 1.1.0 and later.
335
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later.
336
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) version 0.1.1 and later.
337
+
338
+ <!-- README_AWQ.md-compatibility end -->
339
+
340
+ <!-- footer start -->
341
+ <!-- 200823 -->
342
+ ## Discord
343
+
344
+ For further support, and discussions on these models and AI in general, join us at:
345
+
346
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
347
+
348
+ ## Thanks, and how to contribute
349
+
350
+ Thanks to the [chirper.ai](https://chirper.ai) team!
351
+
352
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
353
+
354
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
355
+
356
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
357
+
358
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
359
+
360
+ * Patreon: https://patreon.com/TheBlokeAI
361
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
362
+
363
+ **Special thanks to**: Aemon Algiz.
364
+
365
+ **Patreon special mentions**: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
366
+
367
+
368
+ Thank you to all my generous patrons and donaters!
369
+
370
+ And thank you again to a16z for their generous grant.
371
+
372
+ <!-- footer end -->
373
+
374
+ # Original model card: Ray Hernandez's Chupacabra 7B V2
375
+
376
+
377
+ # Chupacabra 7B v2
378
+
379
+ <p><img src="https://huggingface.co/perlthoughts/Chupacabra-7B/resolve/main/chupacabra7b%202.png" width=330></p>
380
+
381
+ ### Model Description
382
+
383
+ This model was made by merging models based on Mistral with the SLERP merge method.
384
+
385
+ Advantages of SLERP vs averaging weights(common) are as follows:
386
+
387
+ - Spherical Linear Interpolation (SLERP) - Traditionally, model merging often resorts to weight averaging which, although straightforward, might not always capture the intricate features of the models being merged. The SLERP technique addresses this limitation, producing a blended model with characteristics smoothly interpolated from both parent models, ensuring the resultant model captures the essence of both its parents.
388
+
389
+ - Smooth Transitions - SLERP ensures smoother transitions between model parameters. This is especially significant when interpolating between high-dimensional vectors.
390
+
391
+ - Better Preservation of Characteristics - Unlike weight averaging, which might dilute distinct features, SLERP preserves the curvature and characteristics of both models in high-dimensional spaces.
392
+
393
+ - Nuanced Blending - SLERP takes into account the geometric and rotational properties of the models in the vector space, resulting in a blend that is more reflective of both parent models' characteristics.
394
+
395
+ List of all models and merging path is coming soon.
396
+
397
+ ## Purpose
398
+
399
+ Merging the "thick"est model weights from mistral models using amazing training methods like direct preference optimization (dpo) and reinforced learning.
400
+
401
+ I have spent countless hours studying the latest research papers, attending conferences, and networking with experts in the field. I experimented with different algorithms, tactics, fine-tuned hyperparameters, optimizers,
402
+ and optimized code until i achieved the best possible results.
403
+
404
+ It has not been without challenges. there were skeptics who doubted my abilities and questioned my approach. approach can be changed, but a closed mind cannot.
405
+
406
+ I refused to let their negativity bring me down. Instead, I used their doubts as fuel to push myself even harder. I worked tirelessly (vapenation), day and night, until i finally succeeded in merging with the most performant model weights using sota training methods like dpo and other advanced techniques.
407
+
408
+ Thank you openchat 3.5 for showing me the way.
409
+
410
+ I stand tall as a beacon of hope for those who dare to dream big and pursue their passions. my story is a testament to the power of perseverance, determination, and hard work. and i will continue to strive for excellence, always pushing the boundaries of what is possible.
411
+
412
+ Here is my contribution.
413
+
414
+ ## Prompt Template
415
+
416
+ Replace {system} with your system prompt, and {prompt} with your prompt instruction.
417
+
418
+ ```
419
+ ### System:
420
+ {system}
421
+ ### User:
422
+ {instruction}
423
+ ### Assistant:
424
+ ```
425
+
426
+ ### Bug fixes
427
+
428
+ - Fixed issue with generation and the incorrect model weights. Model weights have been corrected and now generation works again. Reuploading GGUF to the GGUF repository as well as the AWQ versions.
429
+
430
+ - **Developed by:** Ray Hernandez
431
+ - **Model type:** Mistral
432
+ - **Language(s) (NLP):** English
433
+ - **License:** Apache 2.0
434
+
435
+ ### Model Sources [optional]
436
+
437
+ <!-- Provide the basic links for the model. -->
438
+
439
+ ## Uses
440
+
441
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
442
+
443
+ ### Direct Use
444
+
445
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
446
+
447
+ [More Information Needed]
448
+
449
+ ### Downstream Use [optional]
450
+
451
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
452
+
453
+ [More Information Needed]
454
+
455
+ ### Out-of-Scope Use
456
+
457
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
458
+
459
+ [More Information Needed]
460
+
461
+ ## Bias, Risks, and Limitations
462
+
463
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
464
+
465
+ [More Information Needed]
466
+
467
+ ### Recommendations
468
+
469
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
470
+
471
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
472
+
473
+ ## How to Get Started with the Model
474
+
475
+ Use the code below to get started with the model.
476
+
477
+ [More Information Needed]
478
+
479
+ ## Training Details
480
+
481
+ ### Training Data
482
+
483
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
484
+
485
+ [More Information Needed]
486
+
487
+ ### Training Procedure
488
+
489
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
490
+
491
+ #### Preprocessing [optional]
492
+
493
+ [More Information Needed]
494
+
495
+
496
+ #### Training Hyperparameters
497
+
498
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
499
+
500
+ #### Speeds, Sizes, Times [optional]
501
+
502
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
503
+
504
+ [More Information Needed]
505
+
506
+ ## Evaluation
507
+
508
+ <!-- This section describes the evaluation protocols and provides the results. -->
509
+
510
+ ### Testing Data, Factors & Metrics
511
+
512
+ #### Testing Data
513
+
514
+ <!-- This should link to a Dataset Card if possible. -->
515
+
516
+ [More Information Needed]
517
+
518
+ #### Factors
519
+
520
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
521
+
522
+ [More Information Needed]
523
+
524
+ #### Metrics
525
+
526
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
527
+
528
+ [More Information Needed]
529
+
530
+ ### Results
531
+
532
+ [More Information Needed]
533
+
534
+ #### Summary
535
+
536
+
537
+ ## Model Examination [optional]
538
+
539
+ <!-- Relevant interpretability work for the model goes here -->
540
+
541
+ [More Information Needed]
542
+
543
+ ## Technical Specifications [optional]
544
+
545
+ ### Model Architecture and Objective
546
+
547
+ [More Information Needed]
548
+
549
+ ### Compute Infrastructure
550
+
551
+ [More Information Needed]
552
+
553
+ #### Hardware
554
+
555
+ [More Information Needed]
556
+
557
+ #### Software
558
+
559
+ [More Information Needed]
560
+
561
+ ## Citation [optional]
562
+
563
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
564
+
565
+ **BibTeX:**
566
+
567
+ [More Information Needed]
568
+
569
+ **APA:**
570
+
571
+ [More Information Needed]
572
+
573
+ ## Glossary [optional]
574
+
575
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
576
+
577
+ [More Information Needed]
578
+
579
+ ## More Information [optional]
580
+
581
+ [More Information Needed]
582
+
583
+ ## Model Card Authors [optional]
584
+
585
+ [More Information Needed]
586
+
587
+ ## Model Card Contact
588
+
589
+ [More Information Needed]