TheBloke commited on
Commit
434da76
1 Parent(s): e89ccd7

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +123 -68
README.md CHANGED
@@ -1,7 +1,16 @@
1
  ---
 
2
  inference: false
3
- license: other
 
 
4
  model_type: llama
 
 
 
 
 
 
5
  ---
6
 
7
  <!-- header start -->
@@ -21,150 +30,194 @@ model_type: llama
21
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
22
  <!-- header end -->
23
 
24
- # Camel AI's CAMEL 33B Combined Data GPTQ
 
 
25
 
26
- These files are GPTQ model files for [Camel AI's CAMEL 33B Combined Data](https://huggingface.co/camel-ai/CAMEL-33B-Combined-Data).
 
27
 
28
- Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
29
 
30
- These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
31
 
 
 
32
  ## Repositories available
33
 
 
34
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ)
35
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GGML)
36
- * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/camel-ai/CAMEL-33B-Combined-Data)
 
37
 
 
38
  ## Prompt template: Vicuna
39
 
40
  ```
41
- A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
42
 
43
- USER: {prompt}
44
- ASSISTANT:
45
  ```
46
 
47
- ## Provided files
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
50
 
51
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
52
 
53
- | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
54
- | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
55
- | main | 4 | None | True | 16.94 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
56
- | gptq-4bit-32g-actorder_True | 4 | 32 | True | 19.44 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
57
- | gptq-4bit-64g-actorder_True | 4 | 64 | True | 18.18 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
58
- | gptq-4bit-128g-actorder_True | 4 | 128 | True | 17.55 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
59
- | gptq-8bit--1g-actorder_True | 8 | None | True | 32.99 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
60
- | gptq-8bit-128g-actorder_False | 8 | 128 | False | 33.73 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
61
- | gptq-3bit--1g-actorder_True | 3 | None | True | 12.92 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
62
- | gptq-3bit-128g-actorder_False | 3 | 128 | False | 13.51 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  ## How to download from branches
65
 
66
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/CAMEL-33B-Combined-Data-GPTQ:gptq-4bit-32g-actorder_True`
67
  - With Git, you can clone a branch with:
68
  ```
69
- git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ`
70
  ```
71
  - In Python Transformers code, the branch is the `revision` parameter; see below.
72
-
 
73
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
74
 
75
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
76
 
77
- It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
78
 
79
  1. Click the **Model tab**.
80
  2. Under **Download custom model or LoRA**, enter `TheBloke/CAMEL-33B-Combined-Data-GPTQ`.
81
- - To download from a specific branch, enter for example `TheBloke/CAMEL-33B-Combined-Data-GPTQ:gptq-4bit-32g-actorder_True`
82
  - see Provided Files above for the list of branches for each option.
83
  3. Click **Download**.
84
- 4. The model will start downloading. Once it's finished it will say "Done"
85
  5. In the top left, click the refresh icon next to **Model**.
86
  6. In the **Model** dropdown, choose the model you just downloaded: `CAMEL-33B-Combined-Data-GPTQ`
87
  7. The model will automatically load, and is now ready for use!
88
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
89
- * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
90
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
 
91
 
 
92
  ## How to use this GPTQ model from Python code
93
 
94
- First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
95
 
96
- `GITHUB_ACTIONS=true pip install auto-gptq`
97
 
98
- Then try the following example code:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
 
100
  ```python
101
- from transformers import AutoTokenizer, pipeline, logging
102
- from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
103
 
104
  model_name_or_path = "TheBloke/CAMEL-33B-Combined-Data-GPTQ"
105
- model_basename = "camel-33b-combined-data-GPTQ-4bit--1g.act.order"
106
-
107
- use_triton = False
 
 
 
108
 
109
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
110
 
111
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
112
- model_basename=model_basename
113
- use_safetensors=True,
114
- trust_remote_code=False,
115
- device="cuda:0",
116
- use_triton=use_triton,
117
- quantize_config=None)
118
-
119
- """
120
- To download from a specific branch, use the revision parameter, as in this example:
121
-
122
- model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
123
- revision="gptq-4bit-32g-actorder_True",
124
- model_basename=model_basename,
125
- use_safetensors=True,
126
- trust_remote_code=False,
127
- device="cuda:0",
128
- quantize_config=None)
129
- """
130
-
131
  prompt = "Tell me about AI"
132
- prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
133
 
134
- USER: {prompt}
135
- ASSISTANT:
136
  '''
137
 
138
  print("\n\n*** Generate:")
139
 
140
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
141
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
142
  print(tokenizer.decode(output[0]))
143
 
144
  # Inference can also be done using transformers' pipeline
145
 
146
- # Prevent printing spurious transformers error when using pipeline with AutoGPTQ
147
- logging.set_verbosity(logging.CRITICAL)
148
-
149
  print("*** Pipeline:")
150
  pipe = pipeline(
151
  "text-generation",
152
  model=model,
153
  tokenizer=tokenizer,
154
  max_new_tokens=512,
 
155
  temperature=0.7,
156
  top_p=0.95,
157
- repetition_penalty=1.15
 
158
  )
159
 
160
  print(pipe(prompt_template)[0]['generated_text'])
161
  ```
 
162
 
 
163
  ## Compatibility
164
 
165
- The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
 
 
166
 
167
- ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
168
 
169
  <!-- footer start -->
170
  <!-- 200823 -->
@@ -174,10 +227,12 @@ For further support, and discussions on these models and AI in general, join us
174
 
175
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
176
 
177
- ## Thanks, and how to contribute.
178
 
179
  Thanks to the [chirper.ai](https://chirper.ai) team!
180
 
 
 
181
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
182
 
183
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -189,7 +244,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
189
 
190
  **Special thanks to**: Aemon Algiz.
191
 
192
- **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter
193
 
194
 
195
  Thank you to all my generous patrons and donaters!
 
1
  ---
2
+ base_model: https://huggingface.co/camel-ai/CAMEL-33B-Combined-Data
3
  inference: false
4
+ license: cc-by-nc-4.0
5
+ model_creator: CAMEL
6
+ model_name: CAMEL 33B Combined Data
7
  model_type: llama
8
+ prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
9
+ The assistant gives helpful, detailed, and polite answers to the user''s questions.
10
+ USER: {prompt} ASSISTANT:
11
+
12
+ '
13
+ quantized_by: TheBloke
14
  ---
15
 
16
  <!-- header start -->
 
30
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
31
  <!-- header end -->
32
 
33
+ # CAMEL 33B Combined Data - GPTQ
34
+ - Model creator: [CAMEL](https://huggingface.co/camel-ai)
35
+ - Original model: [CAMEL 33B Combined Data](https://huggingface.co/camel-ai/CAMEL-33B-Combined-Data)
36
 
37
+ <!-- description start -->
38
+ ## Description
39
 
40
+ This repo contains GPTQ model files for [Camel AI's CAMEL 33B Combined Data](https://huggingface.co/camel-ai/CAMEL-33B-Combined-Data).
41
 
42
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
43
 
44
+ <!-- description end -->
45
+ <!-- repositories-available start -->
46
  ## Repositories available
47
 
48
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-AWQ)
49
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ)
50
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GGUF)
51
+ * [CAMEL's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/camel-ai/CAMEL-33B-Combined-Data)
52
+ <!-- repositories-available end -->
53
 
54
+ <!-- prompt-template start -->
55
  ## Prompt template: Vicuna
56
 
57
  ```
58
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
59
 
 
 
60
  ```
61
 
62
+ <!-- prompt-template end -->
63
+ <!-- licensing start -->
64
+ ## Licensing
65
+
66
+ The creator of the source model has listed its license as `cc-by-nc-4.0`, and this quantization has therefore used that same license.
67
+
68
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
69
+
70
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Camel AI's CAMEL 33B Combined Data](https://huggingface.co/camel-ai/CAMEL-33B-Combined-Data).
71
+ <!-- licensing end -->
72
+ <!-- README_GPTQ.md-provided-files start -->
73
+ ## Provided files and GPTQ parameters
74
 
75
  Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
76
 
77
  Each separate quant is in a different branch. See below for instructions on fetching from different branches.
78
 
79
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
80
+
81
+ <details>
82
+ <summary>Explanation of GPTQ parameters</summary>
 
 
 
 
 
 
83
 
84
+ - Bits: The bit size of the quantised model.
85
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
86
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
87
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
88
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
89
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
90
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
91
+
92
+ </details>
93
+
94
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
95
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
96
+ | [main](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ/tree/main) | 4 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 16.94 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
97
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 19.44 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
98
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 18.18 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
99
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 17.55 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
100
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 32.99 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
101
+ | [gptq-8bit-128g-actorder_False](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ/tree/gptq-8bit-128g-actorder_False) | 8 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 33.73 GB | No | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
102
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 12.92 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
103
+ | [gptq-3bit-128g-actorder_False](https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ/tree/gptq-3bit-128g-actorder_False) | 3 | 128 | No | 0.01 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 2048 | 13.51 GB | No | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
104
+
105
+ <!-- README_GPTQ.md-provided-files end -->
106
+
107
+ <!-- README_GPTQ.md-download-from-branches start -->
108
  ## How to download from branches
109
 
110
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/CAMEL-33B-Combined-Data-GPTQ:main`
111
  - With Git, you can clone a branch with:
112
  ```
113
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/CAMEL-33B-Combined-Data-GPTQ
114
  ```
115
  - In Python Transformers code, the branch is the `revision` parameter; see below.
116
+ <!-- README_GPTQ.md-download-from-branches end -->
117
+ <!-- README_GPTQ.md-text-generation-webui start -->
118
  ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
119
 
120
  Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
121
 
122
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
123
 
124
  1. Click the **Model tab**.
125
  2. Under **Download custom model or LoRA**, enter `TheBloke/CAMEL-33B-Combined-Data-GPTQ`.
126
+ - To download from a specific branch, enter for example `TheBloke/CAMEL-33B-Combined-Data-GPTQ:main`
127
  - see Provided Files above for the list of branches for each option.
128
  3. Click **Download**.
129
+ 4. The model will start downloading. Once it's finished it will say "Done".
130
  5. In the top left, click the refresh icon next to **Model**.
131
  6. In the **Model** dropdown, choose the model you just downloaded: `CAMEL-33B-Combined-Data-GPTQ`
132
  7. The model will automatically load, and is now ready for use!
133
  8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
134
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
135
  9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
136
+ <!-- README_GPTQ.md-text-generation-webui end -->
137
 
138
+ <!-- README_GPTQ.md-use-from-python start -->
139
  ## How to use this GPTQ model from Python code
140
 
141
+ ### Install the necessary packages
142
 
143
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
144
 
145
+ ```shell
146
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
147
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
148
+ ```
149
+
150
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
151
+
152
+ ```shell
153
+ pip3 uninstall -y auto-gptq
154
+ git clone https://github.com/PanQiWei/AutoGPTQ
155
+ cd AutoGPTQ
156
+ pip3 install .
157
+ ```
158
+
159
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
160
+
161
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
162
+ ```shell
163
+ pip3 uninstall -y transformers
164
+ pip3 install git+https://github.com/huggingface/transformers.git
165
+ ```
166
+
167
+ ### You can then use the following code
168
 
169
  ```python
170
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
171
 
172
  model_name_or_path = "TheBloke/CAMEL-33B-Combined-Data-GPTQ"
173
+ # To use a different branch, change revision
174
+ # For example: revision="main"
175
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
176
+ device_map="auto",
177
+ trust_remote_code=False,
178
+ revision="main")
179
 
180
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182
  prompt = "Tell me about AI"
183
+ prompt_template=f'''A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
184
 
 
 
185
  '''
186
 
187
  print("\n\n*** Generate:")
188
 
189
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
190
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
191
  print(tokenizer.decode(output[0]))
192
 
193
  # Inference can also be done using transformers' pipeline
194
 
 
 
 
195
  print("*** Pipeline:")
196
  pipe = pipeline(
197
  "text-generation",
198
  model=model,
199
  tokenizer=tokenizer,
200
  max_new_tokens=512,
201
+ do_sample=True,
202
  temperature=0.7,
203
  top_p=0.95,
204
+ top_k=40,
205
+ repetition_penalty=1.1
206
  )
207
 
208
  print(pipe(prompt_template)[0]['generated_text'])
209
  ```
210
+ <!-- README_GPTQ.md-use-from-python end -->
211
 
212
+ <!-- README_GPTQ.md-compatibility start -->
213
  ## Compatibility
214
 
215
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
216
+
217
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
218
 
219
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
220
+ <!-- README_GPTQ.md-compatibility end -->
221
 
222
  <!-- footer start -->
223
  <!-- 200823 -->
 
227
 
228
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
229
 
230
+ ## Thanks, and how to contribute
231
 
232
  Thanks to the [chirper.ai](https://chirper.ai) team!
233
 
234
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
235
+
236
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
237
 
238
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
244
 
245
  **Special thanks to**: Aemon Algiz.
246
 
247
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
248
 
249
 
250
  Thank you to all my generous patrons and donaters!