TheBloke commited on
Commit
a25419f
·
1 Parent(s): 4833d39

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -18
README.md CHANGED
@@ -1,12 +1,13 @@
1
  ---
 
2
  datasets:
3
  - jondurbin/airoboros-2.1
4
  inference: false
5
  license: llama2
6
  model_creator: Jon Durbin
7
- model_link: https://huggingface.co/jondurbin/airoboros-l2-70b-2.1
8
  model_name: Airoboros L2 70B 2.1
9
  model_type: llama
 
10
  quantized_by: TheBloke
11
  ---
12
 
@@ -42,9 +43,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
42
  <!-- repositories-available start -->
43
  ## Repositories available
44
 
 
45
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ)
46
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GGUF)
47
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GGML)
48
  * [Jon Durbin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-l2-70b-2.1)
49
  <!-- repositories-available end -->
50
 
@@ -60,6 +61,7 @@ ASSISTANT:
60
 
61
  <!-- prompt-template end -->
62
 
 
63
  <!-- README_GPTQ.md-provided-files start -->
64
  ## Provided files and GPTQ parameters
65
 
@@ -84,22 +86,22 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
84
 
85
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
86
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
87
- | [main](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
88
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
89
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
90
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
91
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
92
- | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
93
 
94
  <!-- README_GPTQ.md-provided-files end -->
95
 
96
  <!-- README_GPTQ.md-download-from-branches start -->
97
  ## How to download from branches
98
 
99
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Airoboros-L2-70B-2.1-GPTQ:gptq-4bit-32g-actorder_True`
100
  - With Git, you can clone a branch with:
101
  ```
102
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ
103
  ```
104
  - In Python Transformers code, the branch is the `revision` parameter; see below.
105
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -112,7 +114,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
112
 
113
  1. Click the **Model tab**.
114
  2. Under **Download custom model or LoRA**, enter `TheBloke/Airoboros-L2-70B-2.1-GPTQ`.
115
- - To download from a specific branch, enter for example `TheBloke/Airoboros-L2-70B-2.1-GPTQ:gptq-4bit-32g-actorder_True`
116
  - see Provided Files above for the list of branches for each option.
117
  3. Click **Download**.
118
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -160,10 +162,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
160
 
161
  model_name_or_path = "TheBloke/Airoboros-L2-70B-2.1-GPTQ"
162
  # To use a different branch, change revision
163
- # For example: revision="gptq-4bit-32g-actorder_True"
164
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
165
- torch_dtype=torch.float16,
166
  device_map="auto",
 
167
  revision="main")
168
 
169
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -178,7 +180,7 @@ ASSISTANT:
178
  print("\n\n*** Generate:")
179
 
180
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
181
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
182
  print(tokenizer.decode(output[0]))
183
 
184
  # Inference can also be done using transformers' pipeline
@@ -189,9 +191,11 @@ pipe = pipeline(
189
  model=model,
190
  tokenizer=tokenizer,
191
  max_new_tokens=512,
 
192
  temperature=0.7,
193
  top_p=0.95,
194
- repetition_penalty=1.15
 
195
  )
196
 
197
  print(pipe(prompt_template)[0]['generated_text'])
@@ -216,10 +220,12 @@ For further support, and discussions on these models and AI in general, join us
216
 
217
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
218
 
219
- ## Thanks, and how to contribute.
220
 
221
  Thanks to the [chirper.ai](https://chirper.ai) team!
222
 
 
 
223
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
224
 
225
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -231,7 +237,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
231
 
232
  **Special thanks to**: Aemon Algiz.
233
 
234
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
235
 
236
 
237
  Thank you to all my generous patrons and donaters!
@@ -245,9 +251,8 @@ And thank you again to a16z for their generous grant.
245
 
246
  ### Overview
247
 
248
- __*NOTE: The weights have been re-uploaded as of 2023-08-28 06:57PM EST*__
249
 
250
- __*I re-merged the adapter weights (info here: https://twitter.com/jon_durbin/status/1696243076178571474)*__
251
 
252
  This is an instruction fine-tuned llama-2 model, using synthetic data generated by [airoboros](https://github.com/jondurbin/airoboros)
253
 
 
1
  ---
2
+ base_model: https://huggingface.co/jondurbin/airoboros-l2-70b-2.1
3
  datasets:
4
  - jondurbin/airoboros-2.1
5
  inference: false
6
  license: llama2
7
  model_creator: Jon Durbin
 
8
  model_name: Airoboros L2 70B 2.1
9
  model_type: llama
10
+ prompt_template: "A chat.\nUSER: {prompt}\nASSISTANT: \n"
11
  quantized_by: TheBloke
12
  ---
13
 
 
43
  <!-- repositories-available start -->
44
  ## Repositories available
45
 
46
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-AWQ)
47
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ)
48
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GGUF)
 
49
  * [Jon Durbin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-l2-70b-2.1)
50
  <!-- repositories-available end -->
51
 
 
61
 
62
  <!-- prompt-template end -->
63
 
64
+
65
  <!-- README_GPTQ.md-provided-files start -->
66
  ## Provided files and GPTQ parameters
67
 
 
86
 
87
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
88
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
89
+ | [main](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
90
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
91
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
92
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
93
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
94
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
95
 
96
  <!-- README_GPTQ.md-provided-files end -->
97
 
98
  <!-- README_GPTQ.md-download-from-branches start -->
99
  ## How to download from branches
100
 
101
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Airoboros-L2-70B-2.1-GPTQ:main`
102
  - With Git, you can clone a branch with:
103
  ```
104
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/Airoboros-L2-70B-2.1-GPTQ
105
  ```
106
  - In Python Transformers code, the branch is the `revision` parameter; see below.
107
  <!-- README_GPTQ.md-download-from-branches end -->
 
114
 
115
  1. Click the **Model tab**.
116
  2. Under **Download custom model or LoRA**, enter `TheBloke/Airoboros-L2-70B-2.1-GPTQ`.
117
+ - To download from a specific branch, enter for example `TheBloke/Airoboros-L2-70B-2.1-GPTQ:main`
118
  - see Provided Files above for the list of branches for each option.
119
  3. Click **Download**.
120
  4. The model will start downloading. Once it's finished it will say "Done".
 
162
 
163
  model_name_or_path = "TheBloke/Airoboros-L2-70B-2.1-GPTQ"
164
  # To use a different branch, change revision
165
+ # For example: revision="main"
166
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
167
  device_map="auto",
168
+ trust_remote_code=False,
169
  revision="main")
170
 
171
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
180
  print("\n\n*** Generate:")
181
 
182
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
183
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
184
  print(tokenizer.decode(output[0]))
185
 
186
  # Inference can also be done using transformers' pipeline
 
191
  model=model,
192
  tokenizer=tokenizer,
193
  max_new_tokens=512,
194
+ do_sample=True,
195
  temperature=0.7,
196
  top_p=0.95,
197
+ top_k=40,
198
+ repetition_penalty=1.1
199
  )
200
 
201
  print(pipe(prompt_template)[0]['generated_text'])
 
220
 
221
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
222
 
223
+ ## Thanks, and how to contribute
224
 
225
  Thanks to the [chirper.ai](https://chirper.ai) team!
226
 
227
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
228
+
229
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
230
 
231
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
237
 
238
  **Special thanks to**: Aemon Algiz.
239
 
240
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
241
 
242
 
243
  Thank you to all my generous patrons and donaters!
 
251
 
252
  ### Overview
253
 
254
+ __*This model is a bit broken due to a prompt formatting bug in the training code! 2.2 will be available soon and should fix this*__
255
 
 
256
 
257
  This is an instruction fine-tuned llama-2 model, using synthetic data generated by [airoboros](https://github.com/jondurbin/airoboros)
258