AWQ model commit
Browse files- LICENSE.txt +126 -0
- Notice +1 -0
- USE_POLICY.md +50 -0
- config.json +35 -0
- configuration_llama.py +186 -0
- generation_config.json +9 -0
- model.safetensors +3 -0
- modeling_llama.py +1377 -0
- quant_config.json +6 -0
- special_tokens_map.json +24 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +36 -0
LICENSE.txt
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
LLAMA 2 COMMUNITY LICENSE AGREEMENT
|
2 |
+
Llama 2 Version Release Date: July 18, 2023
|
3 |
+
|
4 |
+
"Agreement" means the terms and conditions for use, reproduction, distribution and
|
5 |
+
modification of the Llama Materials set forth herein.
|
6 |
+
|
7 |
+
"Documentation" means the specifications, manuals and documentation
|
8 |
+
accompanying Llama 2 distributed by Meta at ai.meta.com/resources/models-and-
|
9 |
+
libraries/llama-downloads/.
|
10 |
+
|
11 |
+
"Licensee" or "you" means you, or your employer or any other person or entity (if
|
12 |
+
you are entering into this Agreement on such person or entity's behalf), of the age
|
13 |
+
required under applicable laws, rules or regulations to provide legal consent and that
|
14 |
+
has legal authority to bind your employer or such other person or entity if you are
|
15 |
+
entering in this Agreement on their behalf.
|
16 |
+
|
17 |
+
"Llama 2" means the foundational large language models and software and
|
18 |
+
algorithms, including machine-learning model code, trained model weights,
|
19 |
+
inference-enabling code, training-enabling code, fine-tuning enabling code and other
|
20 |
+
elements of the foregoing distributed by Meta at ai.meta.com/resources/models-and-
|
21 |
+
libraries/llama-downloads/.
|
22 |
+
|
23 |
+
"Llama Materials" means, collectively, Meta's proprietary Llama 2 and
|
24 |
+
Documentation (and any portion thereof) made available under this Agreement.
|
25 |
+
|
26 |
+
"Meta" or "we" means Meta Platforms Ireland Limited (if you are located in or, if you
|
27 |
+
are an entity, your principal place of business is in the EEA or Switzerland) and Meta
|
28 |
+
Platforms, Inc. (if you are located outside of the EEA or Switzerland).
|
29 |
+
|
30 |
+
By clicking "I Accept" below or by using or distributing any portion or element of the
|
31 |
+
Llama Materials, you agree to be bound by this Agreement.
|
32 |
+
|
33 |
+
1. License Rights and Redistribution.
|
34 |
+
|
35 |
+
a. Grant of Rights. You are granted a non-exclusive, worldwide, non-
|
36 |
+
transferable and royalty-free limited license under Meta's intellectual property or
|
37 |
+
other rights owned by Meta embodied in the Llama Materials to use, reproduce,
|
38 |
+
distribute, copy, create derivative works of, and make modifications to the Llama
|
39 |
+
Materials.
|
40 |
+
|
41 |
+
b. Redistribution and Use.
|
42 |
+
|
43 |
+
i. If you distribute or make the Llama Materials, or any derivative works
|
44 |
+
thereof, available to a third party, you shall provide a copy of this Agreement to such
|
45 |
+
third party.
|
46 |
+
ii. If you receive Llama Materials, or any derivative works thereof, from
|
47 |
+
a Licensee as part of an integrated end user product, then Section 2 of this
|
48 |
+
Agreement will not apply to you.
|
49 |
+
|
50 |
+
iii. You must retain in all copies of the Llama Materials that you
|
51 |
+
distribute the following attribution notice within a "Notice" text file distributed as a
|
52 |
+
part of such copies: "Llama 2 is licensed under the LLAMA 2 Community License,
|
53 |
+
Copyright (c) Meta Platforms, Inc. All Rights Reserved."
|
54 |
+
|
55 |
+
iv. Your use of the Llama Materials must comply with applicable laws
|
56 |
+
and regulations (including trade compliance laws and regulations) and adhere to the
|
57 |
+
Acceptable Use Policy for the Llama Materials (available at
|
58 |
+
https://ai.meta.com/llama/use-policy), which is hereby incorporated by reference into
|
59 |
+
this Agreement.
|
60 |
+
|
61 |
+
v. You will not use the Llama Materials or any output or results of the
|
62 |
+
Llama Materials to improve any other large language model (excluding Llama 2 or
|
63 |
+
derivative works thereof).
|
64 |
+
|
65 |
+
2. Additional Commercial Terms. If, on the Llama 2 version release date, the
|
66 |
+
monthly active users of the products or services made available by or for Licensee,
|
67 |
+
or Licensee's affiliates, is greater than 700 million monthly active users in the
|
68 |
+
preceding calendar month, you must request a license from Meta, which Meta may
|
69 |
+
grant to you in its sole discretion, and you are not authorized to exercise any of the
|
70 |
+
rights under this Agreement unless or until Meta otherwise expressly grants you
|
71 |
+
such rights.
|
72 |
+
|
73 |
+
3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE
|
74 |
+
LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE
|
75 |
+
PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
|
76 |
+
EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY
|
77 |
+
WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR
|
78 |
+
FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE
|
79 |
+
FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING
|
80 |
+
THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR
|
81 |
+
USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.
|
82 |
+
|
83 |
+
4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE
|
84 |
+
LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT,
|
85 |
+
NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS
|
86 |
+
AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL,
|
87 |
+
CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN
|
88 |
+
IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF
|
89 |
+
ANY OF THE FOREGOING.
|
90 |
+
|
91 |
+
5. Intellectual Property.
|
92 |
+
|
93 |
+
a. No trademark licenses are granted under this Agreement, and in
|
94 |
+
connection with the Llama Materials, neither Meta nor Licensee may use any name
|
95 |
+
or mark owned by or associated with the other or any of its affiliates, except as
|
96 |
+
required for reasonable and customary use in describing and redistributing the
|
97 |
+
Llama Materials.
|
98 |
+
|
99 |
+
b. Subject to Meta's ownership of Llama Materials and derivatives made by or
|
100 |
+
for Meta, with respect to any derivative works and modifications of the Llama
|
101 |
+
Materials that are made by you, as between you and Meta, you are and will be the
|
102 |
+
owner of such derivative works and modifications.
|
103 |
+
|
104 |
+
c. If you institute litigation or other proceedings against Meta or any entity
|
105 |
+
(including a cross-claim or counterclaim in a lawsuit) alleging that the Llama
|
106 |
+
Materials or Llama 2 outputs or results, or any portion of any of the foregoing,
|
107 |
+
constitutes infringement of intellectual property or other rights owned or licensable
|
108 |
+
by you, then any licenses granted to you under this Agreement shall terminate as of
|
109 |
+
the date such litigation or claim is filed or instituted. You will indemnify and hold
|
110 |
+
harmless Meta from and against any claim by any third party arising out of or related
|
111 |
+
to your use or distribution of the Llama Materials.
|
112 |
+
|
113 |
+
6. Term and Termination. The term of this Agreement will commence upon your
|
114 |
+
acceptance of this Agreement or access to the Llama Materials and will continue in
|
115 |
+
full force and effect until terminated in accordance with the terms and conditions
|
116 |
+
herein. Meta may terminate this Agreement if you are in breach of any term or
|
117 |
+
condition of this Agreement. Upon termination of this Agreement, you shall delete
|
118 |
+
and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the
|
119 |
+
termination of this Agreement.
|
120 |
+
|
121 |
+
7. Governing Law and Jurisdiction. This Agreement will be governed and
|
122 |
+
construed under the laws of the State of California without regard to choice of law
|
123 |
+
principles, and the UN Convention on Contracts for the International Sale of Goods
|
124 |
+
does not apply to this Agreement. The courts of California shall have exclusive
|
125 |
+
jurisdiction of any dispute arising out of this Agreement.
|
126 |
+
|
Notice
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Llama 2 is licensed under the LLAMA 2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.
|
USE_POLICY.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Llama 2 Acceptable Use Policy
|
2 |
+
|
3 |
+
Meta is committed to promoting safe and fair use of its tools and features, including Llama 2. If you access or use Llama 2, you agree to this Acceptable Use Policy (“Policy”). The most recent copy of this policy can be found at [ai.meta.com/llama/use-policy](http://ai.meta.com/llama/use-policy).
|
4 |
+
|
5 |
+
## Prohibited Uses
|
6 |
+
We want everyone to use Llama 2 safely and responsibly. You agree you will not use, or allow others to use, Llama 2 to:
|
7 |
+
|
8 |
+
1. Violate the law or others’ rights, including to:
|
9 |
+
1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:
|
10 |
+
1. Violence or terrorism
|
11 |
+
2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material
|
12 |
+
3. Human trafficking, exploitation, and sexual violence
|
13 |
+
4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.
|
14 |
+
5. Sexual solicitation
|
15 |
+
6. Any other criminal activity
|
16 |
+
2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals
|
17 |
+
3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services
|
18 |
+
4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices
|
19 |
+
5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws
|
20 |
+
6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama 2 Materials
|
21 |
+
7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 2 related to the following:
|
26 |
+
1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State
|
27 |
+
2. Guns and illegal weapons (including weapon development)
|
28 |
+
3. Illegal drugs and regulated/controlled substances
|
29 |
+
4. Operation of critical infrastructure, transportation technologies, or heavy machinery
|
30 |
+
5. Self-harm or harm to others, including suicide, cutting, and eating disorders
|
31 |
+
6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
3. Intentionally deceive or mislead others, including use of Llama 2 related to the following:
|
36 |
+
1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation
|
37 |
+
2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content
|
38 |
+
3. Generating, promoting, or further distributing spam
|
39 |
+
4. Impersonating another individual without consent, authorization, or legal right
|
40 |
+
5. Representing that the use of Llama 2 or outputs are human-generated
|
41 |
+
6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement
|
42 |
+
4. Fail to appropriately disclose to end users any known dangers of your AI system
|
43 |
+
|
44 |
+
Please report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:
|
45 |
+
|
46 |
+
* Reporting issues with the model: [github.com/facebookresearch/llama](http://github.com/facebookresearch/llama)
|
47 |
+
* Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)
|
48 |
+
* Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)
|
49 |
+
* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama: [LlamaUseReport@meta.com](mailto:LlamaUseReport@meta.com)
|
50 |
+
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../../../basemodels/Yarn-Llama-2-13b-64k",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_llama.LlamaConfig",
|
8 |
+
"AutoModelForCausalLM": "modeling_llama.LlamaForCausalLM"
|
9 |
+
},
|
10 |
+
"bos_token_id": 1,
|
11 |
+
"eos_token_id": 2,
|
12 |
+
"hidden_act": "silu",
|
13 |
+
"hidden_size": 5120,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 13824,
|
16 |
+
"max_position_embeddings": 65536,
|
17 |
+
"model_type": "llama",
|
18 |
+
"num_attention_heads": 40,
|
19 |
+
"num_hidden_layers": 40,
|
20 |
+
"num_key_value_heads": 40,
|
21 |
+
"pad_token_id": 0,
|
22 |
+
"pretraining_tp": 1,
|
23 |
+
"rms_norm_eps": 1e-05,
|
24 |
+
"rope_scaling": {
|
25 |
+
"factor": 16.0,
|
26 |
+
"original_max_position_embeddings": 4096,
|
27 |
+
"type": "yarn"
|
28 |
+
},
|
29 |
+
"tie_word_embeddings": false,
|
30 |
+
"torch_dtype": "float16",
|
31 |
+
"transformers_version": "4.33.0.dev0",
|
32 |
+
"use_cache": true,
|
33 |
+
"use_flash_attention": false,
|
34 |
+
"vocab_size": 32000
|
35 |
+
}
|
configuration_llama.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" LLaMA model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
+
|
30 |
+
|
31 |
+
class LlamaConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`LlamaModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
pretraining_tp (`int`, *optional*, defaults to `1`):
|
62 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
63 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
64 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
65 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
66 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
67 |
+
The non-linear activation function (function or string) in the decoder.
|
68 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
69 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
70 |
+
just in case (e.g., 512 or 1024 or 2048).
|
71 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
72 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
73 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
74 |
+
The epsilon used by the rms normalization layers.
|
75 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
76 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
77 |
+
relevant if `config.is_decoder=True`.
|
78 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether to tie weight embeddings
|
80 |
+
rope_scaling (`Dict`, *optional*):
|
81 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling
|
82 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
83 |
+
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
84 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
85 |
+
these scaling strategies behave:
|
86 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
87 |
+
experimental feature, subject to breaking API changes in future versions.
|
88 |
+
|
89 |
+
Example:
|
90 |
+
|
91 |
+
```python
|
92 |
+
>>> from transformers import LlamaModel, LlamaConfig
|
93 |
+
|
94 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
95 |
+
>>> configuration = LlamaConfig()
|
96 |
+
|
97 |
+
>>> # Initializing a model from the llama-7b style configuration
|
98 |
+
>>> model = LlamaModel(configuration)
|
99 |
+
|
100 |
+
>>> # Accessing the model configuration
|
101 |
+
>>> configuration = model.config
|
102 |
+
```"""
|
103 |
+
model_type = "llama"
|
104 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
105 |
+
|
106 |
+
def __init__(
|
107 |
+
self,
|
108 |
+
vocab_size=32000,
|
109 |
+
hidden_size=4096,
|
110 |
+
intermediate_size=11008,
|
111 |
+
num_hidden_layers=32,
|
112 |
+
num_attention_heads=32,
|
113 |
+
num_key_value_heads=None,
|
114 |
+
hidden_act="silu",
|
115 |
+
max_position_embeddings=2048,
|
116 |
+
initializer_range=0.02,
|
117 |
+
rms_norm_eps=1e-6,
|
118 |
+
use_cache=True,
|
119 |
+
pad_token_id=0,
|
120 |
+
bos_token_id=1,
|
121 |
+
eos_token_id=2,
|
122 |
+
pretraining_tp=1,
|
123 |
+
tie_word_embeddings=False,
|
124 |
+
rope_scaling=None,
|
125 |
+
use_flash_attention=False,
|
126 |
+
**kwargs,
|
127 |
+
):
|
128 |
+
self.vocab_size = vocab_size
|
129 |
+
self.max_position_embeddings = max_position_embeddings
|
130 |
+
self.hidden_size = hidden_size
|
131 |
+
self.intermediate_size = intermediate_size
|
132 |
+
self.num_hidden_layers = num_hidden_layers
|
133 |
+
self.num_attention_heads = num_attention_heads
|
134 |
+
|
135 |
+
# for backward compatibility
|
136 |
+
if num_key_value_heads is None:
|
137 |
+
num_key_value_heads = num_attention_heads
|
138 |
+
|
139 |
+
self.num_key_value_heads = num_key_value_heads
|
140 |
+
self.hidden_act = hidden_act
|
141 |
+
self.initializer_range = initializer_range
|
142 |
+
self.rms_norm_eps = rms_norm_eps
|
143 |
+
self.pretraining_tp = pretraining_tp
|
144 |
+
self.use_cache = use_cache
|
145 |
+
self.rope_scaling = rope_scaling
|
146 |
+
self._rope_scaling_validation()
|
147 |
+
self.use_flash_attention = use_flash_attention
|
148 |
+
if self.use_flash_attention:
|
149 |
+
try:
|
150 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
151 |
+
from einops import rearrange
|
152 |
+
except:
|
153 |
+
raise ValueError("`use_flash_attention` requires Flash Attention 2+ and einops.\nTry `pip install einops` and installing Flash Attention from from https://github.com/Dao-AILab/flash-attention")
|
154 |
+
|
155 |
+
super().__init__(
|
156 |
+
pad_token_id=pad_token_id,
|
157 |
+
bos_token_id=bos_token_id,
|
158 |
+
eos_token_id=eos_token_id,
|
159 |
+
tie_word_embeddings=tie_word_embeddings,
|
160 |
+
**kwargs,
|
161 |
+
)
|
162 |
+
|
163 |
+
def _rope_scaling_validation(self):
|
164 |
+
"""
|
165 |
+
Validate the `rope_scaling` configuration.
|
166 |
+
"""
|
167 |
+
if self.rope_scaling is None:
|
168 |
+
return
|
169 |
+
|
170 |
+
if not isinstance(self.rope_scaling, dict):
|
171 |
+
raise ValueError(
|
172 |
+
"`rope_scaling` must be a dictionary, "
|
173 |
+
f"got {self.rope_scaling}"
|
174 |
+
)
|
175 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
176 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
177 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "ntk-by-parts", "yarn", "dynamic-yarn"]:
|
178 |
+
raise ValueError(
|
179 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'ntk-by-parts', 'yarn', 'dynamic-yarn'], got {rope_scaling_type}"
|
180 |
+
)
|
181 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
182 |
+
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
183 |
+
if rope_scaling_type == "ntk-by-parts" or rope_scaling_type == "yarn" or rope_scaling_type == "dynamic-yarn":
|
184 |
+
original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None)
|
185 |
+
if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
|
186 |
+
raise ValueError(f"`rope_scaling.original_max_position_embeddings` must be set to an int when using ntk-by-parts, yarn, and dynamic-yarn")
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"temperature": 0.9,
|
7 |
+
"top_p": 0.6,
|
8 |
+
"transformers_version": "4.32.0.dev0"
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0828e5bef3957143b18c88c59dea19685578f073db59bca8bd29f0ad0d4ace76
|
3 |
+
size 7247987392
|
modeling_llama.py
ADDED
@@ -0,0 +1,1377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch LLaMA model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn.functional as F
|
26 |
+
import torch.utils.checkpoint
|
27 |
+
from torch import nn
|
28 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
29 |
+
|
30 |
+
from transformers.activations import ACT2FN
|
31 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, \
|
32 |
+
SequenceClassifierOutputWithPast
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, \
|
35 |
+
replace_return_docstrings
|
36 |
+
from .configuration_llama import LlamaConfig
|
37 |
+
|
38 |
+
try:
|
39 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
40 |
+
from flash_attn.modules.mha import FlashSelfAttention
|
41 |
+
from einops import rearrange
|
42 |
+
|
43 |
+
have_flash_attention = True
|
44 |
+
except:
|
45 |
+
have_flash_attention = False
|
46 |
+
|
47 |
+
logger = logging.get_logger(__name__)
|
48 |
+
|
49 |
+
_CONFIG_FOR_DOC = "LlamaConfig"
|
50 |
+
|
51 |
+
|
52 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
53 |
+
def _make_causal_mask(
|
54 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
55 |
+
):
|
56 |
+
"""
|
57 |
+
Make causal mask used for bi-directional self-attention.
|
58 |
+
"""
|
59 |
+
bsz, tgt_len = input_ids_shape
|
60 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
61 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
62 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
63 |
+
mask = mask.to(dtype)
|
64 |
+
|
65 |
+
if past_key_values_length > 0:
|
66 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
67 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
68 |
+
|
69 |
+
|
70 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
71 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
72 |
+
"""
|
73 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
74 |
+
"""
|
75 |
+
bsz, src_len = mask.size()
|
76 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
77 |
+
|
78 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
79 |
+
|
80 |
+
inverted_mask = 1.0 - expanded_mask
|
81 |
+
|
82 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
83 |
+
|
84 |
+
|
85 |
+
def _ntk_find_correction_factor(num_rotations, dim, base=10000, max_position_embeddings=2048):
|
86 |
+
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
|
87 |
+
2 * math.log(base)) # Inverse dim formula to find number of rotations
|
88 |
+
|
89 |
+
|
90 |
+
def _ntk_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
|
91 |
+
low = math.floor(_ntk_find_correction_factor(low_rot, dim, base, max_position_embeddings))
|
92 |
+
high = math.ceil(_ntk_find_correction_factor(high_rot, dim, base, max_position_embeddings))
|
93 |
+
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
94 |
+
|
95 |
+
|
96 |
+
def _ntk_linear_ramp_mask(min, max, dim):
|
97 |
+
if min == max:
|
98 |
+
max += 0.001 # Prevent singularity
|
99 |
+
|
100 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
101 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
102 |
+
return ramp_func
|
103 |
+
|
104 |
+
|
105 |
+
def _ntk_find_newbase_ntk(dim, base=10000, scale=1):
|
106 |
+
return base * scale ** (dim / (dim - 2))
|
107 |
+
|
108 |
+
|
109 |
+
def _ntk_build_inv_freq(dim, base, scaling_factor, ntk_factor, extrapolation_factor, original_max_position_embeddings,
|
110 |
+
device):
|
111 |
+
# Interpolation constants found experimentally for LLaMA (might not be totally optimal though)
|
112 |
+
# Do not change unless there is a good reason for doing so!
|
113 |
+
beta_0 = 1.25
|
114 |
+
beta_1 = 0.75
|
115 |
+
gamma_0 = 16
|
116 |
+
gamma_1 = 2
|
117 |
+
|
118 |
+
# Three RoPE extrapolation/interpolation methods
|
119 |
+
inv_freq_base = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
120 |
+
inv_freq_linear = 1.0 / (scaling_factor * (base ** (torch.arange(0, dim, 2).float().to(device) / dim)))
|
121 |
+
inv_freq_ntk = 1.0 / (
|
122 |
+
_ntk_find_newbase_ntk(dim, base, scaling_factor) ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
123 |
+
|
124 |
+
current_dtype = inv_freq_ntk.dtype
|
125 |
+
current_device = inv_freq_ntk.device
|
126 |
+
|
127 |
+
# Combine NTK and Linear
|
128 |
+
low, high = _ntk_find_correction_range(beta_0, beta_1, dim, base, original_max_position_embeddings)
|
129 |
+
inv_freq_mask = (1 - _ntk_linear_ramp_mask(low, high, dim // 2).type(current_dtype).to(current_device)) * ntk_factor
|
130 |
+
inv_freq = inv_freq_linear * (1 - inv_freq_mask) + inv_freq_ntk * inv_freq_mask
|
131 |
+
|
132 |
+
# Combine Extrapolation and NTK and Linear
|
133 |
+
low, high = _ntk_find_correction_range(gamma_0, gamma_1, dim, base, original_max_position_embeddings)
|
134 |
+
inv_freq_mask = (1 - _ntk_linear_ramp_mask(low, high, dim // 2).type(current_dtype).to(
|
135 |
+
current_device)) * extrapolation_factor
|
136 |
+
return inv_freq * (1 - inv_freq_mask) + inv_freq_base * inv_freq_mask
|
137 |
+
|
138 |
+
|
139 |
+
# Inverse dim formula to find dim based on number of rotations
|
140 |
+
def _yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
|
141 |
+
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
|
142 |
+
|
143 |
+
|
144 |
+
# Find dim range bounds based on rotations
|
145 |
+
def _yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
|
146 |
+
low = math.floor(_yarn_find_correction_dim(
|
147 |
+
low_rot, dim, base, max_position_embeddings))
|
148 |
+
high = math.ceil(_yarn_find_correction_dim(
|
149 |
+
high_rot, dim, base, max_position_embeddings))
|
150 |
+
return max(low, 0), min(high, dim - 1) # Clamp values just in case
|
151 |
+
|
152 |
+
|
153 |
+
def _yarn_linear_ramp_mask(min, max, dim):
|
154 |
+
if min == max:
|
155 |
+
max += 0.001 # Prevent singularity
|
156 |
+
|
157 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
158 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
159 |
+
return ramp_func
|
160 |
+
|
161 |
+
|
162 |
+
def _yarn_get_mscale(scale=1):
|
163 |
+
if scale <= 1:
|
164 |
+
return 1.0
|
165 |
+
return 0.1 * math.log(scale) + 1.0
|
166 |
+
|
167 |
+
|
168 |
+
def compute_flash_attention_packed(flash_attn, q, k, v, attention_mask=None):
|
169 |
+
if attention_mask is not None:
|
170 |
+
attention_mask = attention_mask[:, 0, -1]
|
171 |
+
q, k, v = (q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2))
|
172 |
+
|
173 |
+
# q, k, v: [bs, seq_len, num_attention_heads, attn_head_size]
|
174 |
+
# attention_mask (float): [bs, seq_len]
|
175 |
+
batch_size, max_len = q.size(0), q.size(1)
|
176 |
+
|
177 |
+
qkv = torch.stack([q, k, v], dim=2).to(
|
178 |
+
torch.float16
|
179 |
+
) # need to truncate in case input is fp32
|
180 |
+
cu_seqlens, max_seqlen = None, None
|
181 |
+
|
182 |
+
if attention_mask is None:
|
183 |
+
return flash_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
|
184 |
+
else:
|
185 |
+
# Limitation: non-contiguous attention mask will not be handled correctly
|
186 |
+
# model will be able to pay attention between the first and last non-masked token, i.e. left- and right-side padding is supported.
|
187 |
+
csums = (attention_mask >= 0).cumsum(dim=1)
|
188 |
+
ends = csums.argmax(dim=1) + 1
|
189 |
+
starts = ends - csums.max(dim=1).values
|
190 |
+
seqlens = ends - starts
|
191 |
+
|
192 |
+
qkv = torch.cat([qkv[i, starts[i]: ends[i]] for i in range(batch_size)], dim=0)
|
193 |
+
zero = torch.zeros_like(
|
194 |
+
seqlens[:1]
|
195 |
+
) # torch.tensor([0]) with correct dtype and device
|
196 |
+
cu_seqlens = torch.cat([zero, seqlens.cumsum(dim=0)], dim=0).to(torch.int32)
|
197 |
+
max_seqlen = seqlens.max().item()
|
198 |
+
|
199 |
+
out = flash_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen)
|
200 |
+
# out: [num_unmasked_tokens, num_attention_heads, attn_head_size]
|
201 |
+
|
202 |
+
seqs = [out[start:end] for start, end in zip(cu_seqlens[:-1], cu_seqlens[1:])]
|
203 |
+
# stack and pad sequences together
|
204 |
+
padded_seqs = [
|
205 |
+
F.pad(
|
206 |
+
seqs[i],
|
207 |
+
(0, 0) * (seqs[i].dim() - 1) + (starts[i], max_len - ends[i]),
|
208 |
+
value=0.0,
|
209 |
+
)
|
210 |
+
for i in range(batch_size)
|
211 |
+
]
|
212 |
+
|
213 |
+
return torch.stack(padded_seqs).transpose(1, 2)
|
214 |
+
|
215 |
+
|
216 |
+
def compute_flash_attention_inference(query_states, key_states, value_states, attention_mask=None, dropout=0.0):
|
217 |
+
scale = query_states.shape[-1] ** (-0.5)
|
218 |
+
|
219 |
+
batch, _, seq_len_q, _ = query_states.shape
|
220 |
+
_, _, seq_len_k, _ = value_states.shape
|
221 |
+
|
222 |
+
query_states = rearrange(query_states, "b h s d -> b s h d").to(torch.float16)
|
223 |
+
key_states = rearrange(key_states, "b h s d -> b s h d").to(torch.float16)
|
224 |
+
value_states = rearrange(value_states, "b h s d -> b s h d").to(torch.float16)
|
225 |
+
|
226 |
+
if attention_mask is not None:
|
227 |
+
attention_mask = attention_mask[:, 0, -1]
|
228 |
+
csums = (attention_mask >= 0).cumsum(dim=1)
|
229 |
+
ends = csums.argmax(dim=1) + 1
|
230 |
+
starts = ends - csums.max(dim=1).values
|
231 |
+
|
232 |
+
query_states = torch.cat([query_states[i, starts[i]: ends[i]] for i in range(batch)], dim=0)
|
233 |
+
key_states = torch.cat([key_states[i, starts[i]: ends[i]] for i in range(batch)], dim=0)
|
234 |
+
value_states = torch.cat([value_states[i, starts[i]: ends[i]] for i in range(batch)], dim=0)
|
235 |
+
|
236 |
+
cu_seqlens_q = torch.arange(0, (batch + 1) * seq_len_q, step=seq_len_q, dtype=torch.int32,
|
237 |
+
device=query_states.device)
|
238 |
+
|
239 |
+
cu_seqlens_k = torch.arange(0, (batch + 1) * seq_len_k, step=seq_len_k, dtype=torch.int32,
|
240 |
+
device=key_states.device)
|
241 |
+
|
242 |
+
# No point returning attn_probs since it is not guaranteed to be correct
|
243 |
+
if seq_len_q == seq_len_k:
|
244 |
+
attn_output = flash_attn_varlen_func(query_states, key_states, value_states,
|
245 |
+
cu_seqlens_q, cu_seqlens_k, seq_len_q, seq_len_k,
|
246 |
+
dropout, scale, causal=True, return_attn_probs=False)
|
247 |
+
else:
|
248 |
+
attn_output = flash_attn_varlen_func(query_states, key_states, value_states,
|
249 |
+
cu_seqlens_q, cu_seqlens_k, seq_len_q, seq_len_k,
|
250 |
+
dropout, scale, causal=False, return_attn_probs=False)
|
251 |
+
|
252 |
+
return rearrange(attn_output, "(b s) h d-> b h s d", b=batch)
|
253 |
+
|
254 |
+
|
255 |
+
class LlamaRMSNorm(nn.Module):
|
256 |
+
def __init__(self, hidden_size, eps=1e-6):
|
257 |
+
"""
|
258 |
+
LlamaRMSNorm is equivalent to T5LayerNorm
|
259 |
+
"""
|
260 |
+
super().__init__()
|
261 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
262 |
+
self.variance_epsilon = eps
|
263 |
+
|
264 |
+
def forward(self, hidden_states):
|
265 |
+
input_dtype = hidden_states.dtype
|
266 |
+
hidden_states = hidden_states.to(torch.float32)
|
267 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
268 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
269 |
+
return (self.weight * hidden_states).to(input_dtype)
|
270 |
+
|
271 |
+
|
272 |
+
class LlamaRotaryEmbedding(torch.nn.Module):
|
273 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
274 |
+
super().__init__()
|
275 |
+
|
276 |
+
self.dim = dim
|
277 |
+
self.max_position_embeddings = max_position_embeddings
|
278 |
+
self.base = base
|
279 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
280 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
281 |
+
|
282 |
+
# Build here to make `torch.jit.trace` work.
|
283 |
+
self._set_cos_sin_cache(
|
284 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
285 |
+
)
|
286 |
+
|
287 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
288 |
+
self.max_seq_len_cached = seq_len
|
289 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
290 |
+
|
291 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
292 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
293 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
294 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
295 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
296 |
+
|
297 |
+
def forward(self, x, seq_len=None):
|
298 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
299 |
+
if seq_len > self.max_seq_len_cached:
|
300 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
301 |
+
|
302 |
+
return (
|
303 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
304 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
305 |
+
)
|
306 |
+
|
307 |
+
|
308 |
+
class LlamaLinearScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
309 |
+
"""LlamaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
310 |
+
|
311 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
312 |
+
self.scaling_factor = scaling_factor
|
313 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
314 |
+
|
315 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
316 |
+
self.max_seq_len_cached = seq_len
|
317 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
318 |
+
t = t / self.scaling_factor
|
319 |
+
|
320 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
321 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
322 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
323 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
324 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
325 |
+
|
326 |
+
|
327 |
+
class LlamaDynamicNTKScalingRotaryEmbedding(LlamaRotaryEmbedding):
|
328 |
+
"""LlamaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
329 |
+
|
330 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
331 |
+
self.scaling_factor = scaling_factor
|
332 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
333 |
+
|
334 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
335 |
+
self.max_seq_len_cached = seq_len
|
336 |
+
|
337 |
+
if seq_len > self.max_position_embeddings:
|
338 |
+
base = self.base * (
|
339 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
340 |
+
) ** (self.dim / (self.dim - 2))
|
341 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
342 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
343 |
+
|
344 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
345 |
+
|
346 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
347 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
348 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
349 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
350 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
351 |
+
|
352 |
+
|
353 |
+
class LlamaNTKByPartsRotaryEmbedding(LlamaRotaryEmbedding):
|
354 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0, ntk_factor=1.0,
|
355 |
+
extrapolation_factor=1.0, original_max_position_embeddings=2048):
|
356 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
357 |
+
|
358 |
+
inv_freq = _ntk_build_inv_freq(dim, base, scaling_factor, ntk_factor, extrapolation_factor,
|
359 |
+
original_max_position_embeddings, device)
|
360 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
361 |
+
|
362 |
+
# Build here to make `torch.jit.trace` work.
|
363 |
+
self._set_cos_sin_cache(
|
364 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
365 |
+
)
|
366 |
+
|
367 |
+
|
368 |
+
class LlamaYaRNScaledRotaryEmbedding(torch.nn.Module):
|
369 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, scale=1, original_max_position_embeddings=2048,
|
370 |
+
extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, finetuned=False, device=None):
|
371 |
+
super().__init__()
|
372 |
+
|
373 |
+
self.dim = dim
|
374 |
+
self.max_position_embeddings = max_position_embeddings
|
375 |
+
self.base = base
|
376 |
+
self.scale = scale
|
377 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
378 |
+
self.extrapolation_factor = extrapolation_factor
|
379 |
+
self.attn_factor = attn_factor
|
380 |
+
self.beta_fast = beta_fast
|
381 |
+
self.beta_slow = beta_slow
|
382 |
+
|
383 |
+
self.yarn(device)
|
384 |
+
|
385 |
+
# Build here to make `torch.jit.trace` work.
|
386 |
+
self.max_seq_len_cached = max_position_embeddings
|
387 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
388 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
389 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
390 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
391 |
+
dtype = torch.get_default_dtype()
|
392 |
+
|
393 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
|
394 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
|
395 |
+
|
396 |
+
def forward(self, x, seq_len=None):
|
397 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
398 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
399 |
+
if seq_len > self.max_seq_len_cached:
|
400 |
+
self.max_seq_len_cached = seq_len
|
401 |
+
|
402 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
403 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
404 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
405 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
406 |
+
|
407 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(x.dtype),
|
408 |
+
persistent=False)
|
409 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(x.dtype),
|
410 |
+
persistent=False)
|
411 |
+
return (
|
412 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
413 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
414 |
+
)
|
415 |
+
|
416 |
+
def yarn(self, device):
|
417 |
+
pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
418 |
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
419 |
+
inv_freq_interpolation = 1.0 / (self.scale * pos_freqs)
|
420 |
+
|
421 |
+
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base,
|
422 |
+
self.original_max_position_embeddings)
|
423 |
+
inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(
|
424 |
+
device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
425 |
+
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
426 |
+
|
427 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
428 |
+
self.mscale = float(
|
429 |
+
_yarn_get_mscale(self.scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
|
430 |
+
|
431 |
+
|
432 |
+
class LlamaDynamicYaRNScaledRotaryEmbedding(torch.nn.Module):
|
433 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, original_max_position_embeddings=2048,
|
434 |
+
extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, finetuned=False, device=None):
|
435 |
+
super().__init__()
|
436 |
+
|
437 |
+
self.dim = dim
|
438 |
+
self.max_position_embeddings = max_position_embeddings
|
439 |
+
self.base = base
|
440 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
441 |
+
self.extrapolation_factor = extrapolation_factor
|
442 |
+
self.attn_factor = attn_factor
|
443 |
+
self.beta_fast = beta_fast
|
444 |
+
self.beta_slow = beta_slow
|
445 |
+
|
446 |
+
if finetuned:
|
447 |
+
self.yarn(self.max_position_embeddings / self.original_max_position_embeddings, device)
|
448 |
+
else:
|
449 |
+
inv_freq = 1.0 / \
|
450 |
+
(base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
451 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
452 |
+
self.mscale = 1
|
453 |
+
|
454 |
+
# Build here to make `torch.jit.trace` work.
|
455 |
+
self.max_seq_len_cached = max_position_embeddings
|
456 |
+
t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
|
457 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
458 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
459 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
460 |
+
dtype = torch.get_default_dtype()
|
461 |
+
|
462 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
|
463 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
|
464 |
+
|
465 |
+
def forward(self, x, seq_len=None):
|
466 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
467 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
468 |
+
if seq_len > self.max_seq_len_cached:
|
469 |
+
self.max_seq_len_cached = seq_len
|
470 |
+
|
471 |
+
self.yarn(seq_len / self.max_position_embeddings, x.device)
|
472 |
+
|
473 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
474 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
475 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
476 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
477 |
+
|
478 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(x.dtype),
|
479 |
+
persistent=False)
|
480 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(x.dtype),
|
481 |
+
persistent=False)
|
482 |
+
return (
|
483 |
+
self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
484 |
+
self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
|
485 |
+
)
|
486 |
+
|
487 |
+
def yarn(self, scale, device):
|
488 |
+
pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
489 |
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
490 |
+
inv_freq_interpolation = 1.0 / (scale * pos_freqs)
|
491 |
+
|
492 |
+
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base,
|
493 |
+
self.original_max_position_embeddings)
|
494 |
+
inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(
|
495 |
+
device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
496 |
+
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
497 |
+
|
498 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
499 |
+
self.mscale = float(
|
500 |
+
_yarn_get_mscale(scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
|
501 |
+
|
502 |
+
|
503 |
+
def rotate_half(x):
|
504 |
+
"""Rotates half the hidden dims of the input."""
|
505 |
+
x1 = x[..., : x.shape[-1] // 2]
|
506 |
+
x2 = x[..., x.shape[-1] // 2:]
|
507 |
+
return torch.cat((-x2, x1), dim=-1)
|
508 |
+
|
509 |
+
|
510 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
511 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
512 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
513 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
514 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
515 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
516 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
517 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
518 |
+
return q_embed, k_embed
|
519 |
+
|
520 |
+
|
521 |
+
class LlamaMLP(nn.Module):
|
522 |
+
def __init__(self, config):
|
523 |
+
super().__init__()
|
524 |
+
self.config = config
|
525 |
+
self.hidden_size = config.hidden_size
|
526 |
+
self.intermediate_size = config.intermediate_size
|
527 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
528 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
529 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
530 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
531 |
+
|
532 |
+
def forward(self, x):
|
533 |
+
if self.config.pretraining_tp > 1:
|
534 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
535 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
536 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
537 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
538 |
+
|
539 |
+
gate_proj = torch.cat(
|
540 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
541 |
+
)
|
542 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
543 |
+
|
544 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
545 |
+
down_proj = [
|
546 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
547 |
+
]
|
548 |
+
down_proj = sum(down_proj)
|
549 |
+
else:
|
550 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
551 |
+
|
552 |
+
return down_proj
|
553 |
+
|
554 |
+
|
555 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
556 |
+
"""
|
557 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
558 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
559 |
+
"""
|
560 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
561 |
+
if n_rep == 1:
|
562 |
+
return hidden_states
|
563 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
564 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
565 |
+
|
566 |
+
|
567 |
+
class LlamaAttention(nn.Module):
|
568 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
569 |
+
|
570 |
+
def __init__(self, config: LlamaConfig):
|
571 |
+
super().__init__()
|
572 |
+
self.config = config
|
573 |
+
self.hidden_size = config.hidden_size
|
574 |
+
self.num_heads = config.num_attention_heads
|
575 |
+
self.head_dim = self.hidden_size // self.num_heads
|
576 |
+
self.num_key_value_heads = config.num_key_value_heads
|
577 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
578 |
+
self.max_position_embeddings = config.max_position_embeddings
|
579 |
+
|
580 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
581 |
+
raise ValueError(
|
582 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
583 |
+
f" and `num_heads`: {self.num_heads})."
|
584 |
+
)
|
585 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
586 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
587 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
588 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
589 |
+
self._init_rope()
|
590 |
+
self.use_flash_attention = config.use_flash_attention
|
591 |
+
if self.use_flash_attention:
|
592 |
+
if not have_flash_attention:
|
593 |
+
raise RuntimeError("Flash Attention 2 not installed")
|
594 |
+
self.flash_attention = FlashSelfAttention(causal=True)
|
595 |
+
|
596 |
+
def _init_rope(self):
|
597 |
+
if self.config.rope_scaling is None:
|
598 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
599 |
+
else:
|
600 |
+
scaling_type = self.config.rope_scaling["type"]
|
601 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
602 |
+
if scaling_type == "linear":
|
603 |
+
self.rotary_emb = LlamaLinearScalingRotaryEmbedding(
|
604 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
605 |
+
)
|
606 |
+
elif scaling_type == "dynamic":
|
607 |
+
self.rotary_emb = LlamaDynamicNTKScalingRotaryEmbedding(
|
608 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
609 |
+
)
|
610 |
+
elif scaling_type == "ntk-by-parts":
|
611 |
+
original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
|
612 |
+
self.rotary_emb = LlamaNTKByPartsRotaryEmbedding(
|
613 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor,
|
614 |
+
original_max_position_embeddings=original_max_position_embeddings
|
615 |
+
)
|
616 |
+
elif scaling_type == "yarn":
|
617 |
+
original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
|
618 |
+
self.rotary_emb = LlamaYaRNScaledRotaryEmbedding(
|
619 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scale=scaling_factor,
|
620 |
+
original_max_position_embeddings=original_max_position_embeddings
|
621 |
+
)
|
622 |
+
elif scaling_type == "dynamic-yarn":
|
623 |
+
original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
|
624 |
+
self.rotary_emb = LlamaDynamicYaRNScaledRotaryEmbedding(
|
625 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings,
|
626 |
+
original_max_position_embeddings=original_max_position_embeddings
|
627 |
+
)
|
628 |
+
else:
|
629 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
630 |
+
|
631 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
632 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
633 |
+
|
634 |
+
def forward(
|
635 |
+
self,
|
636 |
+
hidden_states: torch.Tensor,
|
637 |
+
attention_mask: Optional[torch.Tensor] = None,
|
638 |
+
position_ids: Optional[torch.LongTensor] = None,
|
639 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
640 |
+
output_attentions: bool = False,
|
641 |
+
use_cache: bool = False,
|
642 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
643 |
+
bsz, q_len, _ = hidden_states.size()
|
644 |
+
|
645 |
+
if self.config.pretraining_tp > 1:
|
646 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
647 |
+
query_slices = self.q_proj.weight.split(
|
648 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
649 |
+
)
|
650 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
651 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
652 |
+
|
653 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
654 |
+
query_states = torch.cat(query_states, dim=-1)
|
655 |
+
|
656 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
657 |
+
key_states = torch.cat(key_states, dim=-1)
|
658 |
+
|
659 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
660 |
+
value_states = torch.cat(value_states, dim=-1)
|
661 |
+
|
662 |
+
else:
|
663 |
+
query_states = self.q_proj(hidden_states)
|
664 |
+
key_states = self.k_proj(hidden_states)
|
665 |
+
value_states = self.v_proj(hidden_states)
|
666 |
+
|
667 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
668 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
669 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
670 |
+
|
671 |
+
kv_seq_len = key_states.shape[-2]
|
672 |
+
if past_key_value is not None:
|
673 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
674 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
675 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
676 |
+
|
677 |
+
if past_key_value is not None:
|
678 |
+
# reuse k, v, self_attention
|
679 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
680 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
681 |
+
|
682 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
683 |
+
|
684 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
685 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
686 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
687 |
+
|
688 |
+
if self.use_flash_attention and not output_attentions:
|
689 |
+
out_dtype = value_states.dtype
|
690 |
+
if self.training or query_states.shape == key_states.shape:
|
691 |
+
self.flash_attention.train(self.training)
|
692 |
+
attn_output = compute_flash_attention_packed(self.flash_attention, query_states, key_states,
|
693 |
+
value_states, attention_mask)
|
694 |
+
else:
|
695 |
+
attn_output = compute_flash_attention_inference(query_states, key_states, value_states, attention_mask)
|
696 |
+
attn_output = attn_output.to(out_dtype)
|
697 |
+
else:
|
698 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
699 |
+
|
700 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
701 |
+
raise ValueError(
|
702 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
703 |
+
f" {attn_weights.size()}"
|
704 |
+
)
|
705 |
+
|
706 |
+
if attention_mask is not None:
|
707 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
708 |
+
raise ValueError(
|
709 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
710 |
+
)
|
711 |
+
attn_weights = attn_weights + attention_mask
|
712 |
+
|
713 |
+
# upcast attention to fp32
|
714 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
715 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
716 |
+
|
717 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
718 |
+
raise ValueError(
|
719 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
720 |
+
f" {attn_output.size()}"
|
721 |
+
)
|
722 |
+
|
723 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
724 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
725 |
+
|
726 |
+
if self.config.pretraining_tp > 1:
|
727 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
728 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
729 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
730 |
+
else:
|
731 |
+
attn_output = self.o_proj(attn_output)
|
732 |
+
|
733 |
+
if not output_attentions:
|
734 |
+
attn_weights = None
|
735 |
+
|
736 |
+
return attn_output, attn_weights, past_key_value
|
737 |
+
|
738 |
+
|
739 |
+
class LlamaDecoderLayer(nn.Module):
|
740 |
+
def __init__(self, config: LlamaConfig):
|
741 |
+
super().__init__()
|
742 |
+
self.hidden_size = config.hidden_size
|
743 |
+
self.self_attn = LlamaAttention(config=config)
|
744 |
+
self.mlp = LlamaMLP(config)
|
745 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
746 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
747 |
+
|
748 |
+
def forward(
|
749 |
+
self,
|
750 |
+
hidden_states: torch.Tensor,
|
751 |
+
attention_mask: Optional[torch.Tensor] = None,
|
752 |
+
position_ids: Optional[torch.LongTensor] = None,
|
753 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
754 |
+
output_attentions: Optional[bool] = False,
|
755 |
+
use_cache: Optional[bool] = False,
|
756 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
757 |
+
"""
|
758 |
+
Args:
|
759 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
760 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
761 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
762 |
+
output_attentions (`bool`, *optional*):
|
763 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
764 |
+
returned tensors for more detail.
|
765 |
+
use_cache (`bool`, *optional*):
|
766 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
767 |
+
(see `past_key_values`).
|
768 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
769 |
+
"""
|
770 |
+
|
771 |
+
residual = hidden_states
|
772 |
+
|
773 |
+
hidden_states = self.input_layernorm(hidden_states)
|
774 |
+
|
775 |
+
# Self Attention
|
776 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
777 |
+
hidden_states=hidden_states,
|
778 |
+
attention_mask=attention_mask,
|
779 |
+
position_ids=position_ids,
|
780 |
+
past_key_value=past_key_value,
|
781 |
+
output_attentions=output_attentions,
|
782 |
+
use_cache=use_cache,
|
783 |
+
)
|
784 |
+
hidden_states = residual + hidden_states
|
785 |
+
|
786 |
+
# Fully Connected
|
787 |
+
residual = hidden_states
|
788 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
789 |
+
hidden_states = self.mlp(hidden_states)
|
790 |
+
hidden_states = residual + hidden_states
|
791 |
+
|
792 |
+
outputs = (hidden_states,)
|
793 |
+
|
794 |
+
if output_attentions:
|
795 |
+
outputs += (self_attn_weights,)
|
796 |
+
|
797 |
+
if use_cache:
|
798 |
+
outputs += (present_key_value,)
|
799 |
+
|
800 |
+
return outputs
|
801 |
+
|
802 |
+
|
803 |
+
LLAMA_START_DOCSTRING = r"""
|
804 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
805 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
806 |
+
etc.)
|
807 |
+
|
808 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
809 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
810 |
+
and behavior.
|
811 |
+
|
812 |
+
Parameters:
|
813 |
+
config ([`LlamaConfig`]):
|
814 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
815 |
+
load the weights associated with the model, only the configuration. Check out the
|
816 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
817 |
+
"""
|
818 |
+
|
819 |
+
|
820 |
+
@add_start_docstrings(
|
821 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
822 |
+
LLAMA_START_DOCSTRING,
|
823 |
+
)
|
824 |
+
class LlamaPreTrainedModel(PreTrainedModel):
|
825 |
+
config_class = LlamaConfig
|
826 |
+
base_model_prefix = "model"
|
827 |
+
supports_gradient_checkpointing = True
|
828 |
+
_no_split_modules = ["LlamaDecoderLayer"]
|
829 |
+
_skip_keys_device_placement = "past_key_values"
|
830 |
+
|
831 |
+
def _init_weights(self, module):
|
832 |
+
std = self.config.initializer_range
|
833 |
+
if isinstance(module, nn.Linear):
|
834 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
835 |
+
if module.bias is not None:
|
836 |
+
module.bias.data.zero_()
|
837 |
+
elif isinstance(module, nn.Embedding):
|
838 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
839 |
+
if module.padding_idx is not None:
|
840 |
+
module.weight.data[module.padding_idx].zero_()
|
841 |
+
|
842 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
843 |
+
if isinstance(module, LlamaModel):
|
844 |
+
module.gradient_checkpointing = value
|
845 |
+
|
846 |
+
|
847 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
848 |
+
Args:
|
849 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
850 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
851 |
+
it.
|
852 |
+
|
853 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
854 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
855 |
+
|
856 |
+
[What are input IDs?](../glossary#input-ids)
|
857 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
858 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
859 |
+
|
860 |
+
- 1 for tokens that are **not masked**,
|
861 |
+
- 0 for tokens that are **masked**.
|
862 |
+
|
863 |
+
[What are attention masks?](../glossary#attention-mask)
|
864 |
+
|
865 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
866 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
867 |
+
|
868 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
869 |
+
`past_key_values`).
|
870 |
+
|
871 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
872 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
873 |
+
information on the default strategy.
|
874 |
+
|
875 |
+
- 1 indicates the head is **not masked**,
|
876 |
+
- 0 indicates the head is **masked**.
|
877 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
878 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
879 |
+
config.n_positions - 1]`.
|
880 |
+
|
881 |
+
[What are position IDs?](../glossary#position-ids)
|
882 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
883 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
884 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
885 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
886 |
+
|
887 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
888 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
889 |
+
|
890 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
891 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
892 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
893 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
894 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
895 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
896 |
+
model's internal embedding lookup matrix.
|
897 |
+
use_cache (`bool`, *optional*):
|
898 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
899 |
+
`past_key_values`).
|
900 |
+
output_attentions (`bool`, *optional*):
|
901 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
902 |
+
tensors for more detail.
|
903 |
+
output_hidden_states (`bool`, *optional*):
|
904 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
905 |
+
more detail.
|
906 |
+
return_dict (`bool`, *optional*):
|
907 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
908 |
+
"""
|
909 |
+
|
910 |
+
|
911 |
+
@add_start_docstrings(
|
912 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
913 |
+
LLAMA_START_DOCSTRING,
|
914 |
+
)
|
915 |
+
class LlamaModel(LlamaPreTrainedModel):
|
916 |
+
"""
|
917 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LlamaDecoderLayer`]
|
918 |
+
|
919 |
+
Args:
|
920 |
+
config: LlamaConfig
|
921 |
+
"""
|
922 |
+
|
923 |
+
def __init__(self, config: LlamaConfig):
|
924 |
+
super().__init__(config)
|
925 |
+
self.padding_idx = config.pad_token_id
|
926 |
+
self.vocab_size = config.vocab_size
|
927 |
+
|
928 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
929 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
930 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
931 |
+
|
932 |
+
self.gradient_checkpointing = False
|
933 |
+
self.use_flash_attention = config.use_flash_attention
|
934 |
+
# Initialize weights and apply final processing
|
935 |
+
self.post_init()
|
936 |
+
|
937 |
+
def get_input_embeddings(self):
|
938 |
+
return self.embed_tokens
|
939 |
+
|
940 |
+
def set_input_embeddings(self, value):
|
941 |
+
self.embed_tokens = value
|
942 |
+
|
943 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
944 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
945 |
+
# create causal mask
|
946 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
947 |
+
combined_attention_mask = None
|
948 |
+
if input_shape[-1] > 1:
|
949 |
+
combined_attention_mask = _make_causal_mask(
|
950 |
+
input_shape,
|
951 |
+
inputs_embeds.dtype,
|
952 |
+
device=inputs_embeds.device,
|
953 |
+
past_key_values_length=past_key_values_length,
|
954 |
+
)
|
955 |
+
|
956 |
+
if attention_mask is not None:
|
957 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
958 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
959 |
+
inputs_embeds.device
|
960 |
+
)
|
961 |
+
combined_attention_mask = (
|
962 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
963 |
+
)
|
964 |
+
|
965 |
+
return combined_attention_mask
|
966 |
+
|
967 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
968 |
+
def forward(
|
969 |
+
self,
|
970 |
+
input_ids: torch.LongTensor = None,
|
971 |
+
attention_mask: Optional[torch.Tensor] = None,
|
972 |
+
position_ids: Optional[torch.LongTensor] = None,
|
973 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
974 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
975 |
+
use_cache: Optional[bool] = None,
|
976 |
+
output_attentions: Optional[bool] = None,
|
977 |
+
output_hidden_states: Optional[bool] = None,
|
978 |
+
return_dict: Optional[bool] = None,
|
979 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
980 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
981 |
+
output_hidden_states = (
|
982 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
983 |
+
)
|
984 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
985 |
+
|
986 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
987 |
+
|
988 |
+
# retrieve input_ids and inputs_embeds
|
989 |
+
if input_ids is not None and inputs_embeds is not None:
|
990 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
991 |
+
elif input_ids is not None:
|
992 |
+
batch_size, seq_length = input_ids.shape
|
993 |
+
elif inputs_embeds is not None:
|
994 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
995 |
+
else:
|
996 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
997 |
+
|
998 |
+
seq_length_with_past = seq_length
|
999 |
+
past_key_values_length = 0
|
1000 |
+
|
1001 |
+
if past_key_values is not None:
|
1002 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
1003 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
1004 |
+
|
1005 |
+
if position_ids is None:
|
1006 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1007 |
+
position_ids = torch.arange(
|
1008 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1009 |
+
)
|
1010 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
1011 |
+
else:
|
1012 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
1013 |
+
|
1014 |
+
if inputs_embeds is None:
|
1015 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1016 |
+
# embed positions
|
1017 |
+
if attention_mask is None:
|
1018 |
+
attention_mask = torch.ones(
|
1019 |
+
(batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
1020 |
+
)
|
1021 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
1022 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1023 |
+
)
|
1024 |
+
|
1025 |
+
hidden_states = inputs_embeds
|
1026 |
+
|
1027 |
+
if self.gradient_checkpointing and self.training:
|
1028 |
+
if use_cache:
|
1029 |
+
logger.warning_once(
|
1030 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1031 |
+
)
|
1032 |
+
use_cache = False
|
1033 |
+
|
1034 |
+
# decoder layers
|
1035 |
+
all_hidden_states = () if output_hidden_states else None
|
1036 |
+
all_self_attns = () if output_attentions else None
|
1037 |
+
next_decoder_cache = () if use_cache else None
|
1038 |
+
|
1039 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1040 |
+
if output_hidden_states:
|
1041 |
+
all_hidden_states += (hidden_states,)
|
1042 |
+
|
1043 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1044 |
+
|
1045 |
+
if self.gradient_checkpointing and self.training:
|
1046 |
+
|
1047 |
+
def create_custom_forward(module):
|
1048 |
+
def custom_forward(*inputs):
|
1049 |
+
# None for past_key_value
|
1050 |
+
return module(*inputs, output_attentions, None)
|
1051 |
+
|
1052 |
+
return custom_forward
|
1053 |
+
|
1054 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1055 |
+
create_custom_forward(decoder_layer),
|
1056 |
+
hidden_states,
|
1057 |
+
attention_mask,
|
1058 |
+
position_ids,
|
1059 |
+
None,
|
1060 |
+
)
|
1061 |
+
else:
|
1062 |
+
layer_outputs = decoder_layer(
|
1063 |
+
hidden_states,
|
1064 |
+
attention_mask=attention_mask,
|
1065 |
+
position_ids=position_ids,
|
1066 |
+
past_key_value=past_key_value,
|
1067 |
+
output_attentions=output_attentions,
|
1068 |
+
use_cache=use_cache,
|
1069 |
+
)
|
1070 |
+
|
1071 |
+
hidden_states = layer_outputs[0]
|
1072 |
+
|
1073 |
+
if use_cache:
|
1074 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
1075 |
+
|
1076 |
+
if output_attentions:
|
1077 |
+
all_self_attns += (layer_outputs[1],)
|
1078 |
+
|
1079 |
+
hidden_states = self.norm(hidden_states)
|
1080 |
+
|
1081 |
+
# add hidden states from the last decoder layer
|
1082 |
+
if output_hidden_states:
|
1083 |
+
all_hidden_states += (hidden_states,)
|
1084 |
+
|
1085 |
+
next_cache = next_decoder_cache if use_cache else None
|
1086 |
+
if not return_dict:
|
1087 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1088 |
+
return BaseModelOutputWithPast(
|
1089 |
+
last_hidden_state=hidden_states,
|
1090 |
+
past_key_values=next_cache,
|
1091 |
+
hidden_states=all_hidden_states,
|
1092 |
+
attentions=all_self_attns,
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
|
1096 |
+
class LlamaForCausalLM(LlamaPreTrainedModel):
|
1097 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1098 |
+
|
1099 |
+
def __init__(self, config):
|
1100 |
+
super().__init__(config)
|
1101 |
+
self.model = LlamaModel(config)
|
1102 |
+
self.vocab_size = config.vocab_size
|
1103 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1104 |
+
|
1105 |
+
# Initialize weights and apply final processing
|
1106 |
+
self.post_init()
|
1107 |
+
|
1108 |
+
def get_input_embeddings(self):
|
1109 |
+
return self.model.embed_tokens
|
1110 |
+
|
1111 |
+
def set_input_embeddings(self, value):
|
1112 |
+
self.model.embed_tokens = value
|
1113 |
+
|
1114 |
+
def get_output_embeddings(self):
|
1115 |
+
return self.lm_head
|
1116 |
+
|
1117 |
+
def set_output_embeddings(self, new_embeddings):
|
1118 |
+
self.lm_head = new_embeddings
|
1119 |
+
|
1120 |
+
def set_decoder(self, decoder):
|
1121 |
+
self.model = decoder
|
1122 |
+
|
1123 |
+
def get_decoder(self):
|
1124 |
+
return self.model
|
1125 |
+
|
1126 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1127 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1128 |
+
def forward(
|
1129 |
+
self,
|
1130 |
+
input_ids: torch.LongTensor = None,
|
1131 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1132 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1133 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1134 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1135 |
+
labels: Optional[torch.LongTensor] = None,
|
1136 |
+
use_cache: Optional[bool] = None,
|
1137 |
+
output_attentions: Optional[bool] = None,
|
1138 |
+
output_hidden_states: Optional[bool] = None,
|
1139 |
+
return_dict: Optional[bool] = None,
|
1140 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1141 |
+
r"""
|
1142 |
+
Args:
|
1143 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1144 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1145 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1146 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1147 |
+
|
1148 |
+
Returns:
|
1149 |
+
|
1150 |
+
Example:
|
1151 |
+
|
1152 |
+
```python
|
1153 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
1154 |
+
|
1155 |
+
>>> model = LlamaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1156 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1157 |
+
|
1158 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1159 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1160 |
+
|
1161 |
+
>>> # Generate
|
1162 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1163 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1164 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1165 |
+
```"""
|
1166 |
+
|
1167 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1168 |
+
output_hidden_states = (
|
1169 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1170 |
+
)
|
1171 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1172 |
+
|
1173 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1174 |
+
outputs = self.model(
|
1175 |
+
input_ids=input_ids,
|
1176 |
+
attention_mask=attention_mask,
|
1177 |
+
position_ids=position_ids,
|
1178 |
+
past_key_values=past_key_values,
|
1179 |
+
inputs_embeds=inputs_embeds,
|
1180 |
+
use_cache=use_cache,
|
1181 |
+
output_attentions=output_attentions,
|
1182 |
+
output_hidden_states=output_hidden_states,
|
1183 |
+
return_dict=return_dict,
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
hidden_states = outputs[0]
|
1187 |
+
if self.config.pretraining_tp > 1:
|
1188 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1189 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1190 |
+
logits = torch.cat(logits, dim=-1)
|
1191 |
+
else:
|
1192 |
+
logits = self.lm_head(hidden_states)
|
1193 |
+
logits = logits.float()
|
1194 |
+
|
1195 |
+
loss = None
|
1196 |
+
if labels is not None:
|
1197 |
+
# Shift so that tokens < n predict n
|
1198 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1199 |
+
shift_labels = labels[..., 1:].contiguous()
|
1200 |
+
# Flatten the tokens
|
1201 |
+
loss_fct = CrossEntropyLoss()
|
1202 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1203 |
+
shift_labels = shift_labels.view(-1)
|
1204 |
+
# Enable model parallelism
|
1205 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1206 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1207 |
+
|
1208 |
+
if not return_dict:
|
1209 |
+
output = (logits,) + outputs[1:]
|
1210 |
+
return (loss,) + output if loss is not None else output
|
1211 |
+
|
1212 |
+
return CausalLMOutputWithPast(
|
1213 |
+
loss=loss,
|
1214 |
+
logits=logits,
|
1215 |
+
past_key_values=outputs.past_key_values,
|
1216 |
+
hidden_states=outputs.hidden_states,
|
1217 |
+
attentions=outputs.attentions,
|
1218 |
+
)
|
1219 |
+
|
1220 |
+
def prepare_inputs_for_generation(
|
1221 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1222 |
+
):
|
1223 |
+
if past_key_values:
|
1224 |
+
input_ids = input_ids[:, -1:]
|
1225 |
+
|
1226 |
+
position_ids = kwargs.get("position_ids", None)
|
1227 |
+
if attention_mask is not None and position_ids is None:
|
1228 |
+
# create position_ids on the fly for batch generation
|
1229 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1230 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1231 |
+
if past_key_values:
|
1232 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1233 |
+
|
1234 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1235 |
+
if inputs_embeds is not None and past_key_values is None:
|
1236 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1237 |
+
else:
|
1238 |
+
model_inputs = {"input_ids": input_ids}
|
1239 |
+
|
1240 |
+
model_inputs.update(
|
1241 |
+
{
|
1242 |
+
"position_ids": position_ids,
|
1243 |
+
"past_key_values": past_key_values,
|
1244 |
+
"use_cache": kwargs.get("use_cache"),
|
1245 |
+
"attention_mask": attention_mask,
|
1246 |
+
}
|
1247 |
+
)
|
1248 |
+
return model_inputs
|
1249 |
+
|
1250 |
+
@staticmethod
|
1251 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1252 |
+
reordered_past = ()
|
1253 |
+
for layer_past in past_key_values:
|
1254 |
+
reordered_past += (
|
1255 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1256 |
+
)
|
1257 |
+
return reordered_past
|
1258 |
+
|
1259 |
+
|
1260 |
+
@add_start_docstrings(
|
1261 |
+
"""
|
1262 |
+
The LLaMa Model transformer with a sequence classification head on top (linear layer).
|
1263 |
+
|
1264 |
+
[`LlamaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1265 |
+
(e.g. GPT-2) do.
|
1266 |
+
|
1267 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1268 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1269 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1270 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1271 |
+
each row of the batch).
|
1272 |
+
""",
|
1273 |
+
LLAMA_START_DOCSTRING,
|
1274 |
+
)
|
1275 |
+
class LlamaForSequenceClassification(LlamaPreTrainedModel):
|
1276 |
+
def __init__(self, config):
|
1277 |
+
super().__init__(config)
|
1278 |
+
self.num_labels = config.num_labels
|
1279 |
+
self.model = LlamaModel(config)
|
1280 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1281 |
+
|
1282 |
+
# Initialize weights and apply final processing
|
1283 |
+
self.post_init()
|
1284 |
+
|
1285 |
+
def get_input_embeddings(self):
|
1286 |
+
return self.model.embed_tokens
|
1287 |
+
|
1288 |
+
def set_input_embeddings(self, value):
|
1289 |
+
self.model.embed_tokens = value
|
1290 |
+
|
1291 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
1292 |
+
def forward(
|
1293 |
+
self,
|
1294 |
+
input_ids: torch.LongTensor = None,
|
1295 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1296 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1297 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1298 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1299 |
+
labels: Optional[torch.LongTensor] = None,
|
1300 |
+
use_cache: Optional[bool] = None,
|
1301 |
+
output_attentions: Optional[bool] = None,
|
1302 |
+
output_hidden_states: Optional[bool] = None,
|
1303 |
+
return_dict: Optional[bool] = None,
|
1304 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1305 |
+
r"""
|
1306 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1307 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1308 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1309 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1310 |
+
"""
|
1311 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1312 |
+
|
1313 |
+
transformer_outputs = self.model(
|
1314 |
+
input_ids,
|
1315 |
+
attention_mask=attention_mask,
|
1316 |
+
position_ids=position_ids,
|
1317 |
+
past_key_values=past_key_values,
|
1318 |
+
inputs_embeds=inputs_embeds,
|
1319 |
+
use_cache=use_cache,
|
1320 |
+
output_attentions=output_attentions,
|
1321 |
+
output_hidden_states=output_hidden_states,
|
1322 |
+
return_dict=return_dict,
|
1323 |
+
)
|
1324 |
+
hidden_states = transformer_outputs[0]
|
1325 |
+
logits = self.score(hidden_states)
|
1326 |
+
|
1327 |
+
if input_ids is not None:
|
1328 |
+
batch_size = input_ids.shape[0]
|
1329 |
+
else:
|
1330 |
+
batch_size = inputs_embeds.shape[0]
|
1331 |
+
|
1332 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1333 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1334 |
+
if self.config.pad_token_id is None:
|
1335 |
+
sequence_lengths = -1
|
1336 |
+
else:
|
1337 |
+
if input_ids is not None:
|
1338 |
+
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
|
1339 |
+
else:
|
1340 |
+
sequence_lengths = -1
|
1341 |
+
|
1342 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1343 |
+
|
1344 |
+
loss = None
|
1345 |
+
if labels is not None:
|
1346 |
+
labels = labels.to(logits.device)
|
1347 |
+
if self.config.problem_type is None:
|
1348 |
+
if self.num_labels == 1:
|
1349 |
+
self.config.problem_type = "regression"
|
1350 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1351 |
+
self.config.problem_type = "single_label_classification"
|
1352 |
+
else:
|
1353 |
+
self.config.problem_type = "multi_label_classification"
|
1354 |
+
|
1355 |
+
if self.config.problem_type == "regression":
|
1356 |
+
loss_fct = MSELoss()
|
1357 |
+
if self.num_labels == 1:
|
1358 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1359 |
+
else:
|
1360 |
+
loss = loss_fct(pooled_logits, labels)
|
1361 |
+
elif self.config.problem_type == "single_label_classification":
|
1362 |
+
loss_fct = CrossEntropyLoss()
|
1363 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1364 |
+
elif self.config.problem_type == "multi_label_classification":
|
1365 |
+
loss_fct = BCEWithLogitsLoss()
|
1366 |
+
loss = loss_fct(pooled_logits, labels)
|
1367 |
+
if not return_dict:
|
1368 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1369 |
+
return ((loss,) + output) if loss is not None else output
|
1370 |
+
|
1371 |
+
return SequenceClassifierOutputWithPast(
|
1372 |
+
loss=loss,
|
1373 |
+
logits=pooled_logits,
|
1374 |
+
past_key_values=transformer_outputs.past_key_values,
|
1375 |
+
hidden_states=transformer_outputs.hidden_states,
|
1376 |
+
attentions=transformer_outputs.attentions,
|
1377 |
+
)
|
quant_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"zero_point": true,
|
3 |
+
"q_group_size": 128,
|
4 |
+
"w_bit": 4,
|
5 |
+
"version": "GEMM"
|
6 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "<unk>",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<unk>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
3 |
+
size 499723
|
tokenizer_config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"bos_token": {
|
5 |
+
"__type": "AddedToken",
|
6 |
+
"content": "<s>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"clean_up_tokenization_spaces": false,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"legacy": false,
|
22 |
+
"model_max_length": 1000000000000000019884624838656,
|
23 |
+
"pad_token": null,
|
24 |
+
"sp_model_kwargs": {},
|
25 |
+
"spaces_between_special_tokens": false,
|
26 |
+
"tokenizer_class": "LlamaTokenizer",
|
27 |
+
"unk_token": {
|
28 |
+
"__type": "AddedToken",
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false
|
34 |
+
},
|
35 |
+
"use_default_system_prompt": true
|
36 |
+
}
|