|
--- |
|
license: mit |
|
language: |
|
- th |
|
pipeline_tag: text-generation |
|
tags: |
|
- instruction-finetuning |
|
library_name: adapter-transformers |
|
datasets: |
|
- iapp_wiki_qa_squad |
|
- tatsu-lab/alpaca |
|
- wongnai_reviews |
|
- wisesight_sentiment |
|
--- |
|
|
|
# 🐃🇹🇭 Buffala-LoRa-TH |
|
|
|
Buffala-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the Stanford Alpaca (TH Translated), WikiTH, Pantip and IAppQ&A dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora). |
|
|
|
## Issues and what next? |
|
- The model still lacks a significant amount of world knowledge, so it is necessary to fine-tune it on larger Thai datasets > Next version: CCNet,OSCAR,thWiki |
|
- Currently, there is no translation prompt. We plan to fine-tune the model on the SCB Thai-English dataset soon. |
|
- The model works well with the LangChain Search agent (Serpapi), which serves as a hotfix for world knowledge. > Plan for Spaces with search chain demo |
|
- Lacked of chat capabilities, waiting for LangChain implementation. |
|
|
|
## How to use |
|
|
|
```python |
|
import torch |
|
from peft import PeftModel |
|
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer |
|
|
|
|
|
device = "cuda" |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") |
|
model = LlamaForCausalLM.from_pretrained( |
|
"decapoda-research/llama-7b-hf", |
|
load_in_8bit=True, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
model = PeftModel.from_pretrained( |
|
model, |
|
"Thaweewat/thai-buffala-lora-7b-v0-1", |
|
torch_dtype=torch.float16, |
|
) |
|
|
|
def generate_prompt(instruction, input=None): |
|
|
|
if input: |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Input: |
|
{input + get_list_and_snippet(instruction)} |
|
### Response:""" |
|
else: |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Instruction: |
|
{instruction} |
|
### Input: |
|
{get_list_and_snippet(instruction)} |
|
### Response:""" |
|
|
|
if not LOAD_8BIT: |
|
model.half() |
|
|
|
model.eval() |
|
if torch.__version__ >= "2" and sys.platform != "win32": |
|
model = torch.compile(model) |
|
|
|
|
|
def evaluate( |
|
instruction, |
|
input=None, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
max_new_tokens=128, |
|
**kwargs, |
|
): |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
return output.split("### Response:")[1].strip() |
|
|
|
evaluate(instruction = "จงแก้สมการต่อไปนี้ X เท่ากับเท่าไหร่", input="X+Y=15 and Y=7") |
|
""" X = 8 """ |
|
|