File size: 1,458 Bytes
7534eee
 
 
 
83f2266
 
 
 
7534eee
 
83f2266
 
 
 
 
 
 
 
 
 
 
7534eee
 
 
 
 
db2c739
7534eee
83f2266
 
 
 
7534eee
 
 
a21a8e8
7534eee
 
 
a21a8e8
7534eee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- NLP-MINI-PROJECT/rabbi_kook
metrics:
- rouge
model-index:
- name: kook-model-output-dir-2
  results:
  - task:
      name: Summarization
      type: summarization
    dataset:
      name: NLP-MINI-PROJECT/rabbi_kook
      type: NLP-MINI-PROJECT/rabbi_kook
    metrics:
    - name: Rouge1
      type: rouge
      value: 0.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-rabbi-kook

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the NLP-MINI-PROJECT/rabbi_kook dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7677
- Gen Len: 115.8184

## Model description

Summarization model of fine-tuned mt5-small with Rabbi-Kook paragraphs and summaries.

## Intended uses & limitations

Summarization of Rabbi-Kook style paragraphs.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0

### Training results



### Framework versions

- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.11.0