File size: 6,819 Bytes
184c72a
 
 
 
9585d12
184c72a
9585d12
184c72a
 
9585d12
 
184c72a
9585d12
 
 
 
 
 
184c72a
9585d12
 
184c72a
9585d12
 
 
 
184c72a
9585d12
 
 
 
 
 
 
 
 
 
184c72a
9585d12
 
 
 
 
 
 
 
 
 
184c72a
9585d12
 
 
 
 
184c72a
9585d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184c72a
9585d12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
184c72a
 
9585d12
 
 
184c72a
9585d12
184c72a
9585d12
184c72a
 
 
 
 
9585d12
 
 
184c72a
 
 
9585d12
184c72a
9585d12
184c72a
 
 
 
 
9585d12
 
184c72a
9585d12
184c72a
9585d12
 
 
 
184c72a
 
9585d12
 
184c72a
9585d12
184c72a
 
9585d12
 
184c72a
 
9585d12
 
 
 
184c72a
9585d12
184c72a
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import pickle
from datasets import load_dataset

class CompanyDescriptionModel:
    def __init__(self):
        self.vectorizer = TfidfVectorizer()
        self.company_descriptions = {}
        self.description_vectors = None
        
    def load_huggingface_data(self):
        """

        Load and process the job descriptions dataset from HuggingFace

        """
        print("Loading dataset from HuggingFace...")
        dataset = load_dataset("jacob-hugging-face/job-descriptions")
        
        # Process the training split
        train_data = dataset['train']
        
        # Create company-description pairs
        for item in train_data:
            company = item['company_name'].strip().lower()
            description = item['job_description'].strip()
            
            # If company already exists, append new description
            if company in self.company_descriptions:
                if isinstance(self.company_descriptions[company], list):
                    self.company_descriptions[company].append(description)
                else:
                    self.company_descriptions[company] = [self.company_descriptions[company], description]
            else:
                self.company_descriptions[company] = description
                
        print(f"Loaded descriptions for {len(self.company_descriptions)} companies")
        
        # Create vectors for all descriptions
        descriptions = []
        for desc in self.company_descriptions.values():
            if isinstance(desc, list):
                # If multiple descriptions, join them
                descriptions.append(" ".join(desc))
            else:
                descriptions.append(desc)
                
        self.description_vectors = self.vectorizer.fit_transform(descriptions)
        
    def get_description(self, company_name, similarity_threshold=0.3):
        """

        Get job descriptions for a company

        """
        company_name = company_name.lower().strip()
        
        # Direct match
        if company_name in self.company_descriptions:
            desc = self.company_descriptions[company_name]
            if isinstance(desc, list):
                return True, f"Found {len(desc)} job descriptions for {company_name}:\n\n" + "\n\n---\n\n".join(desc)
            return True, f"Job description for {company_name}:\n\n{desc}"
            
        # Try to find similar company names
        try:
            company_vector = self.vectorizer.transform([company_name])
            similarities = cosine_similarity(company_vector, self.description_vectors).flatten()
            max_sim_idx = np.argmax(similarities)
            
            if similarities[max_sim_idx] >= similarity_threshold:
                similar_company = list(self.company_descriptions.keys())[max_sim_idx]
                desc = self.company_descriptions[similar_company]
                if isinstance(desc, list):
                    return True, f"Similar to '{similar_company}':\n\n" + "\n\n---\n\n".join(desc)
                return True, f"Similar to '{similar_company}':\n\n{desc}"
            else:
                return False, f"No job descriptions found for '{company_name}'. Please provide one for training."
        except Exception as e:
            return False, f"Error processing company name: {str(e)}"
    
    def add_new_description(self, company_name, description):
        """

        Add a new company and job description

        """
        company_name = company_name.lower().strip()
        if company_name in self.company_descriptions:
            if isinstance(self.company_descriptions[company_name], list):
                self.company_descriptions[company_name].append(description)
            else:
                self.company_descriptions[company_name] = [self.company_descriptions[company_name], description]
        else:
            self.company_descriptions[company_name] = description
            
        # Retrain vectors
        descriptions = []
        for desc in self.company_descriptions.values():
            if isinstance(desc, list):
                descriptions.append(" ".join(desc))
            else:
                descriptions.append(desc)
                
        self.description_vectors = self.vectorizer.fit_transform(descriptions)
        
    def save_model(self, filename):
        """

        Save the model to a file

        """
        model_data = {
            'company_descriptions': self.company_descriptions,
            'vectorizer': self.vectorizer,
            'description_vectors': self.description_vectors
        }
        with open(filename, 'wb') as f:
            pickle.dump(model_data, f)
            
    def load_model(self, filename):
        """

        Load the model from a file

        """
        try:
            with open(filename, 'rb') as f:
                model_data = pickle.load(f)
                self.company_descriptions = model_data['company_descriptions']
                self.vectorizer = model_data['vectorizer']
                self.description_vectors = model_data['description_vectors']
            return True
        except FileNotFoundError:
            return False

def main():
    model = CompanyDescriptionModel()
    model_file = 'company_description_model.pkl'
    
    # Try to load existing model, if not found, load from HuggingFace
    if not model.load_model(model_file):
        print("No existing model found. Loading data from HuggingFace...")
        model.load_huggingface_data()
        model.save_model(model_file)
        print("Initial model created and saved.")
    
    while True:
        print("\n=== Company Job Description System ===")
        company = input("Enter a company name to get job descriptions (or 'quit' to exit): ").strip()
        
        if company.lower() == 'quit':
            break
            
        found, description = model.get_description(company)
        print(f"\nResult:\n{description}")
        
        if not found:
            print("\nLet's add this company to our database!")
            new_description = input("Please provide a job description for this company: ").strip()
            model.add_new_description(company, new_description)
            print(f"\nThank you! Job description for '{company}' has been added to the database.")
            
            # Save the updated model
            model.save_model(model_file)
            print("Model has been updated and saved.")

if __name__ == "__main__":
    main()