File size: 3,532 Bytes
24e4a5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_11_0
metrics:
- wer
model-index:
- name: firstcolab3
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_11_0
type: common_voice_11_0
config: th
split: train+validation
args: th
metrics:
- name: Wer
type: wer
value: 0.6226224783861671
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# firstcolab3
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2756
- Wer: 0.6226
- Cer: 0.0535
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 7.187 | 0.75 | 1000 | 3.7705 | 1.0 | 1.0 |
| 2.0277 | 1.5 | 2000 | 0.6139 | 0.9202 | 0.1545 |
| 0.8368 | 2.24 | 3000 | 0.4351 | 0.8589 | 0.1147 |
| 0.6772 | 2.99 | 4000 | 0.3762 | 0.8200 | 0.0990 |
| 0.5702 | 3.74 | 5000 | 0.3434 | 0.7889 | 0.0891 |
| 0.5205 | 4.49 | 6000 | 0.3427 | 0.7726 | 0.0855 |
| 0.4773 | 5.24 | 7000 | 0.3073 | 0.7408 | 0.0767 |
| 0.4389 | 5.98 | 8000 | 0.2969 | 0.7421 | 0.0759 |
| 0.4069 | 6.73 | 9000 | 0.2884 | 0.7134 | 0.0711 |
| 0.3858 | 7.48 | 10000 | 0.2952 | 0.7066 | 0.0699 |
| 0.36 | 8.23 | 11000 | 0.2846 | 0.6902 | 0.0662 |
| 0.3517 | 8.98 | 12000 | 0.2729 | 0.6756 | 0.0638 |
| 0.3265 | 9.72 | 13000 | 0.2844 | 0.6756 | 0.0645 |
| 0.3127 | 10.47 | 14000 | 0.2769 | 0.6803 | 0.0640 |
| 0.3016 | 11.22 | 15000 | 0.2772 | 0.6566 | 0.0618 |
| 0.2855 | 11.97 | 16000 | 0.2791 | 0.6540 | 0.0598 |
| 0.2699 | 12.72 | 17000 | 0.2714 | 0.6455 | 0.0589 |
| 0.264 | 13.46 | 18000 | 0.2782 | 0.6472 | 0.0588 |
| 0.2518 | 14.21 | 19000 | 0.2693 | 0.6398 | 0.0578 |
| 0.2498 | 14.96 | 20000 | 0.2761 | 0.6300 | 0.0561 |
| 0.2426 | 15.71 | 21000 | 0.2796 | 0.6366 | 0.0561 |
| 0.2271 | 16.45 | 22000 | 0.2804 | 0.6336 | 0.0554 |
| 0.2271 | 17.2 | 23000 | 0.2758 | 0.6347 | 0.0552 |
| 0.22 | 17.95 | 24000 | 0.2785 | 0.6279 | 0.0544 |
| 0.2143 | 18.7 | 25000 | 0.2783 | 0.6246 | 0.0538 |
| 0.2134 | 19.45 | 26000 | 0.2756 | 0.6226 | 0.0535 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2
|