File size: 3,901 Bytes
8a79123 58844a5 9bd2bdd 58844a5 8a79123 62588ff 8a79123 f5c38c6 8a79123 f5c38c6 8a79123 62588ff 8a79123 f5c38c6 62588ff 8a79123 f5c38c6 62588ff f5c38c6 8a79123 f5c38c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: mit
language:
- en
tags:
- vidore
datasets:
- Tevatron/docmatix-ir
- HuggingFaceM4/Docmatix
library_name: Tevatron
---
# DSE-Phi3-Docmatix-V1.0
DSE-Phi3-Docmatix-V1.0 is a bi-encoder model designed to encode document screenshots into dense vectors for document retrieval. The Document Screenshot Embedding ([DSE](https://arxiv.org/abs/2406.11251)) approach captures documents in their original visual format, preserving all information such as text, images, and layout, thus avoiding tedious parsing and potential information loss.
The model, `Tevatron/dse-phi3-docmatix-v1.0`, is trained using the `Tevatron/docmatix-ir` dataset, a variant of `HuggingFaceM4/Docmatix` specifically adapted for training PDF retrievers with Vision Language Models in open-domain question answering scenarios. For more information on dataset filtering and hard negative mining, refer to the [docmatix-ir dataset page](https://huggingface.co/datasets/Tevatron/docmatix-ir/blob/main/README.md).
## How to Use the Model
### Load the Model and Processor
```python
import torch
from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig
processor = AutoProcessor.from_pretrained('microsoft/Phi-3-vision-128k-instruct', trust_remote_code=True)
config = AutoConfig.from_pretrained('microsoft/Phi-3-vision-128k-instruct', trust_remote_code=True, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, use_cache=False)
model = AutoModelForCausalLM.from_pretrained('Tevatron/dse-phi3-docmatix-v1.0', trust_remote_code=True, config=config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16).to('cuda:0')
def get_embedding(last_hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
sequence_lengths = attention_mask.sum(dim=1) - 1
bs = last_hidden_state.shape[0]
reps = last_hidden_state[torch.arange(bs, device=last_hidden_state.device), sequence_lengths]
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
return reps
```
### Encode Text Query
```python
queries = ["query: Where can we find Llama?", "query: What is the LLaMA model?"]
query_inputs = processor(queries, return_tensors="pt", padding="longest", max_length=128, truncation=True).to('cuda:0')
output = model(**query_inputs, return_dict=True, output_hidden_states=True)
query_embeddings = get_embedding(output.hidden_states[-1], query_inputs["attention_mask"])
```
### Encode Document Screenshot
```python
from PIL import Image
passage_image1 = Image.open("path/to/your/image1.png")
passage_image2 = Image.open("path/to/your/image2.png")
passage_images = [passage_image1, passage_image2]
passage_prompts = ["\nWhat is shown in this image?</s>", "\nWhat is shown in this image?</s>"]
passage_inputs = processor(passage_prompts, images=passage_images, return_tensors="pt", padding="longest", max_length=4096, truncation=True).to('cuda:0')
output = model(**passage_inputs, return_dict=True, output_hidden_states=True)
doc_embeddings = get_embedding(output.hidden_states[-1], passage_inputs["attention_mask"])
```
### Compute Similarity
```python
from torch.nn.functional import cosine_similarity
similarities = cosine_similarity(query_embeddings, doc_embeddings)
print(similarities)
```
### Encode Document Text
This DSE checkpoint is warm-up with `Tevatron/msmarco-passage-aug`, thus the model can also effectively encode document as text input.
```python
passage_prompts = ["Llama is in Aferica</s>", "LLaMA is an LLM released by Meta.</s>"]
passage_inputs = processor(passage_prompts, images=None, return_tensors="pt", padding="longest", max_length=4096, truncation=True).to('cuda:0')
output = model(**passage_inputs, return_dict=True, output_hidden_states=True)
doc_embeddings = get_embedding(output.hidden_states[-1], passage_inputs["attention_mask"])
similarities = cosine_similarity(query_embeddings, doc_embeddings)
print(similarities)
``` |