|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_keras_callback |
|
base_model: t5-small |
|
model-index: |
|
- name: TestZee/t5-small-finetuned-kaggle-data-t5-v3.0 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# TestZee/t5-small-finetuned-kaggle-data-t5-v3.0 |
|
|
|
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 1.6248 |
|
- Validation Loss: 1.6558 |
|
- Train Rouge1: 26.3006 |
|
- Train Rouge2: 15.0931 |
|
- Train Rougel: 22.7561 |
|
- Train Rougelsum: 24.3816 |
|
- Train Gen Len: 19.0 |
|
- Epoch: 29 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.001} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |
|
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| |
|
| 2.1318 | 1.8436 | 24.0637 | 12.9655 | 20.6308 | 22.1857 | 19.0 | 0 | |
|
| 2.0035 | 1.7955 | 24.9502 | 13.7602 | 21.4422 | 23.0424 | 19.0 | 1 | |
|
| 1.9561 | 1.7670 | 25.6590 | 14.5211 | 22.0967 | 23.5134 | 19.0 | 2 | |
|
| 1.9227 | 1.7496 | 25.8863 | 14.7209 | 22.3661 | 23.8629 | 19.0 | 3 | |
|
| 1.8951 | 1.7334 | 26.0026 | 14.7861 | 22.4126 | 23.8936 | 19.0 | 4 | |
|
| 1.8716 | 1.7234 | 26.3796 | 14.9421 | 22.7097 | 24.2118 | 19.0 | 5 | |
|
| 1.8558 | 1.7138 | 26.2830 | 14.9347 | 22.8008 | 24.1908 | 19.0 | 6 | |
|
| 1.8362 | 1.7072 | 26.0811 | 14.6698 | 22.5673 | 23.9941 | 19.0 | 7 | |
|
| 1.8222 | 1.7020 | 26.0600 | 14.8445 | 22.6614 | 23.9462 | 19.0 | 8 | |
|
| 1.8086 | 1.6929 | 26.3903 | 15.0590 | 22.9725 | 24.3007 | 19.0 | 9 | |
|
| 1.7958 | 1.6870 | 26.2563 | 14.8773 | 22.7601 | 24.1487 | 19.0 | 10 | |
|
| 1.7802 | 1.6847 | 26.2638 | 15.0330 | 22.8279 | 24.2225 | 19.0 | 11 | |
|
| 1.7709 | 1.6823 | 26.0351 | 14.9826 | 22.6653 | 24.0415 | 19.0 | 12 | |
|
| 1.7610 | 1.6796 | 26.1864 | 15.0833 | 22.7959 | 24.1713 | 19.0 | 13 | |
|
| 1.7486 | 1.6754 | 26.2693 | 15.2384 | 22.8580 | 24.2483 | 19.0 | 14 | |
|
| 1.7354 | 1.6744 | 26.1257 | 14.9953 | 22.7029 | 24.0956 | 19.0 | 15 | |
|
| 1.7262 | 1.6740 | 26.1954 | 15.0393 | 22.8311 | 24.1282 | 19.0 | 16 | |
|
| 1.7206 | 1.6703 | 26.1409 | 14.9949 | 22.7586 | 24.1355 | 19.0 | 17 | |
|
| 1.7083 | 1.6663 | 26.1880 | 15.1119 | 22.7500 | 24.1816 | 19.0 | 18 | |
|
| 1.7002 | 1.6662 | 25.9666 | 14.9556 | 22.5439 | 23.9713 | 19.0 | 19 | |
|
| 1.6926 | 1.6654 | 26.1649 | 15.1911 | 22.8287 | 24.2002 | 19.0 | 20 | |
|
| 1.6839 | 1.6589 | 26.2105 | 15.0021 | 22.7778 | 24.2852 | 19.0 | 21 | |
|
| 1.6768 | 1.6596 | 26.1263 | 14.8676 | 22.6634 | 24.1171 | 19.0 | 22 | |
|
| 1.6670 | 1.6612 | 25.9718 | 14.8101 | 22.5048 | 23.9592 | 19.0 | 23 | |
|
| 1.6604 | 1.6590 | 26.2419 | 15.0633 | 22.7685 | 24.3165 | 19.0 | 24 | |
|
| 1.6498 | 1.6564 | 26.2757 | 15.0082 | 22.8157 | 24.3126 | 19.0 | 25 | |
|
| 1.6455 | 1.6570 | 26.2307 | 14.9338 | 22.6259 | 24.2636 | 19.0 | 26 | |
|
| 1.6368 | 1.6573 | 26.4114 | 15.3485 | 22.9117 | 24.4928 | 19.0 | 27 | |
|
| 1.6325 | 1.6547 | 26.5272 | 15.4393 | 23.0764 | 24.6935 | 19.0 | 28 | |
|
| 1.6248 | 1.6558 | 26.3006 | 15.0931 | 22.7561 | 24.3816 | 19.0 | 29 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- TensorFlow 2.8.2 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|