File size: 38,480 Bytes
f76d30f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
from collections import OrderedDict
from typing import Tuple, Union
from itertools import repeat
import collections.abc

import math
import logging
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.checkpoint import checkpoint

import importlib.util
if importlib.util.find_spec('flash_attn'):
    FlashMHA = importlib.import_module('flash_attn.flash_attention').FlashMHA

from clip import _tokenizer
from clip.configuration_bert import BertConfig
from clip.modeling_bert import BertModel

try:
    from transformers import CLIPTextModelWithProjection
except:
    pass

class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1):
        super().__init__()

        # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
        self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)

        self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()

        self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)

        self.relu = nn.ReLU(inplace=True)
        self.downsample = None
        self.stride = stride

        if stride > 1 or inplanes != planes * Bottleneck.expansion:
            # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
            self.downsample = nn.Sequential(OrderedDict([
                ("-1", nn.AvgPool2d(stride)),
                ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
                ("1", nn.BatchNorm2d(planes * self.expansion))
            ]))

    def forward(self, x: torch.Tensor):
        identity = x

        out = self.relu(self.bn1(self.conv1(x)))
        out = self.relu(self.bn2(self.conv2(out)))
        out = self.avgpool(out)
        out = self.bn3(self.conv3(out))

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)
        return out


class AttentionPool2d(nn.Module):
    def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
        super().__init__()
        self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
        self.k_proj = nn.Linear(embed_dim, embed_dim)
        self.q_proj = nn.Linear(embed_dim, embed_dim)
        self.v_proj = nn.Linear(embed_dim, embed_dim)
        self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
        self.num_heads = num_heads

    def forward(self, x):
        x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1)  # NCHW -> (HW)NC
        x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0)  # (HW+1)NC
        x = x + self.positional_embedding[:, None, :].to(x.dtype)  # (HW+1)NC
        x, _ = F.multi_head_attention_forward(
            query=x, key=x, value=x,
            embed_dim_to_check=x.shape[-1],
            num_heads=self.num_heads,
            q_proj_weight=self.q_proj.weight,
            k_proj_weight=self.k_proj.weight,
            v_proj_weight=self.v_proj.weight,
            in_proj_weight=None,
            in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
            bias_k=None,
            bias_v=None,
            add_zero_attn=False,
            dropout_p=0,
            out_proj_weight=self.c_proj.weight,
            out_proj_bias=self.c_proj.bias,
            use_separate_proj_weight=True,
            training=self.training,
            need_weights=False
        )

        return x[0]


class ModifiedResNet(nn.Module):
    """
    A ResNet class that is similar to torchvision's but contains the following changes:
    - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
    - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
    - The final pooling layer is a QKV attention instead of an average pool
    """

    def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
        super().__init__()
        self.output_dim = output_dim
        self.input_resolution = input_resolution

        # the 3-layer stem
        self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(width // 2)
        self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(width // 2)
        self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
        self.bn3 = nn.BatchNorm2d(width)
        self.avgpool = nn.AvgPool2d(2)
        self.relu = nn.ReLU(inplace=True)

        # residual layers
        self._inplanes = width  # this is a *mutable* variable used during construction
        self.layer1 = self._make_layer(width, layers[0])
        self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
        self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
        self.layer4 = self._make_layer(width * 8, layers[3], stride=2)

        embed_dim = width * 32  # the ResNet feature dimension
        self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)

    def _make_layer(self, planes, blocks, stride=1):
        layers = [Bottleneck(self._inplanes, planes, stride)]

        self._inplanes = planes * Bottleneck.expansion
        for _ in range(1, blocks):
            layers.append(Bottleneck(self._inplanes, planes))

        return nn.Sequential(*layers)

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        # FIXME support for non-transformer
        pass

    def forward(self, x):
        def stem(x):
            for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
                x = self.relu(bn(conv(x)))
            x = self.avgpool(x)
            return x

        x = x.type(self.conv1.weight.dtype)
        x = stem(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.attnpool(x)

        return x


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x.type(torch.float32))
        return ret.type(orig_type)


class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, use_flash_attention: bool = False):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head) if not use_flash_attention else FlashMHA(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_model * 4)),
            ("gelu", QuickGELU()),
            ("c_proj", nn.Linear(d_model * 4, d_model))
        ]))
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask
        self.use_flash_attention = use_flash_attention

    def attention(self, x: torch.Tensor):
        self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
        if self.use_flash_attention:
            # Batch first is needed for FlashAttention. See https://github.com/HazyResearch/flash-attention/issues/84 for more information.
            return self.attn(x.transpose(1, 0))[0].transpose(1, 0)
        else:
            return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

    def forward(self, x: torch.Tensor):
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


class Transformer(nn.Module):
    def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, use_flash_attention: bool = False):
        super().__init__()
        self.width = width
        self.layers = layers
        self.grad_checkpointing = False
        self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask, use_flash_attention) for _ in range(layers)])

    def forward(self, x: torch.Tensor):
        if self.grad_checkpointing and not torch.jit.is_scripting():
            for r in self.resblocks:
                x = checkpoint(r, x)
            return x        
        return self.resblocks(x)


class VisualTransformer(nn.Module):
    def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int, use_flash_attention: bool = False):
        super().__init__()
        self.input_resolution = input_resolution
        self.grid_size = (self.input_resolution // patch_size, self.input_resolution // patch_size)
        self.output_dim = output_dim
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)

        scale = width ** -0.5
        self.class_embedding = nn.Parameter(scale * torch.randn(width))
        self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
        self.ln_pre = LayerNorm(width)

        self.transformer = Transformer(width, layers, heads, use_flash_attention=use_flash_attention)

        self.ln_post = LayerNorm(width)
        self.proj = nn.Parameter(scale * torch.randn(width, output_dim))

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.transformer.grad_checkpointing = enable

    def random_masking(self, x, mask_ratio):
        N, L, D = x.shape  # batch, length, dim
        len_keep = int((L - 1) * (1 - mask_ratio))

        noise = torch.rand(N, L - 1, device=x.device)
        ids_shuffle = torch.argsort(noise, dim=1) + torch.ones(N, L - 1, device=x.device,
                                                               dtype=int)
        ids_keep = ids_shuffle[:, :len_keep]

        x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D))

        x0 = x[:, 0, :]
        x0 = x0.reshape(N, 1, D)
        x_masked_add = torch.cat([x0, x_masked], axis=1)
        return x_masked_add

    def forward(self, x: torch.Tensor, mask_ratio: float = 0.0):
        x = self.conv1(x)  # shape = [*, width, grid, grid]
        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]
        x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1)  # shape = [*, grid ** 2 + 1, width]
        x = x + self.positional_embedding.to(x.dtype)
        if mask_ratio != 0:
            x = self.random_masking(x, mask_ratio)
        x = self.ln_pre(x)

        x = x.permute(1, 0, 2)  # NLD -> LND
        x = self.transformer(x)
        x = x.permute(1, 0, 2)  # LND -> NLD

        x = self.ln_post(x[:, 0, :])

        if self.proj is not None:
            x = x @ self.proj

        return x


class CLIP(nn.Module):
    def __init__(self,
                 embed_dim: int,
                 # vision
                 image_resolution: int,
                 vision_layers: Union[Tuple[int, int, int, int], int],
                 vision_width: int,
                 vision_patch_size: int,
                 # text
                 vocab_size: int,
                 text_attention_probs_dropout_prob: float, 
                 text_hidden_act: str, 
                 text_hidden_dropout_prob: float, 
                 text_hidden_size: int,
                 text_initializer_range: float, 
                 text_intermediate_size: int, 
                 text_max_position_embeddings: int, 
                 text_num_attention_heads: int, 
                 text_num_hidden_layers: int, 
                 text_type_vocab_size: int,
                 tokenizer = _tokenizer,
                 # vision head width, added this param for ViT-H
                 vision_head_width: int = 64,
                 use_flash_attention: bool = False,
                 ):
        super().__init__()

        if isinstance(vision_layers, (tuple, list)):
            vision_heads = vision_width * 32 // vision_head_width
            self.visual = ModifiedResNet(
                layers=vision_layers,
                output_dim=embed_dim,
                heads=vision_heads,
                input_resolution=image_resolution,
                width=vision_width
            )
        else:
            vision_heads = vision_width // vision_head_width
            self.visual = VisualTransformer(
                input_resolution=image_resolution,
                patch_size=vision_patch_size,
                width=vision_width,
                layers=vision_layers,
                heads=vision_heads,
                output_dim=embed_dim,
                use_flash_attention=use_flash_attention
            )

        self.bert_config = BertConfig(
            vocab_size_or_config_json_file=vocab_size,
            hidden_size=text_hidden_size,
            num_hidden_layers=text_num_hidden_layers,
            num_attention_heads=text_num_attention_heads,
            intermediate_size=text_intermediate_size,
            hidden_act=text_hidden_act,
            hidden_dropout_prob=text_hidden_dropout_prob,
            attention_probs_dropout_prob=text_attention_probs_dropout_prob,
            max_position_embeddings=text_max_position_embeddings,
            type_vocab_size=text_type_vocab_size,
            initializer_range=text_initializer_range,
            layer_norm_eps=1e-12,
            use_flash_attention=use_flash_attention
        )
        self.bert = BertModel(self.bert_config)

        self.text_projection = nn.Parameter(torch.empty(text_hidden_size, embed_dim))
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        self.tokenizer = tokenizer

        self.initialize_parameters()

    def initialize_parameters(self):
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        if isinstance(self.visual, ModifiedResNet):
            if self.visual.attnpool is not None:
                std = self.visual.attnpool.c_proj.in_features ** -0.5
                nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)

            for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
                for name, param in resnet_block.named_parameters():
                    if name.endswith("bn3.weight"):
                        nn.init.zeros_(param)

        if self.text_projection is not None:
            nn.init.normal_(self.text_projection, std=self.bert_config.hidden_size ** -0.5)

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.visual.set_grad_checkpointing(enable)
        self.bert.set_grad_checkpointing(enable)

    @property
    def dtype(self):
        return self.visual.conv1.weight.dtype

    def encode_image(self, image, mask_ratio=0):
        if isinstance(self.visual, ModifiedResNet):
            # mask_ratio > 0 (FLIP strategy) is currently only implemented for VisualTransformer.
            return self.visual(image.type(self.dtype))
        return self.visual(image.type(self.dtype), mask_ratio)

    def encode_text(self, text):
        pad_index = self.tokenizer.vocab['[PAD]']
        attn_mask = text.ne(pad_index).type(self.dtype)
        x = self.bert(text, attention_mask=attn_mask)[0].type(self.dtype) # [batch_size, seq_length, hidden_size]
        return x[:, 0, :] @ self.text_projection

    def forward(self, image, text, mask_ratio=0):
        assert image is not None or text is not None, "text and image cannot both be None!"

        if image is None:
            return self.encode_text(text)
        elif text is None:
            return self.encode_image(image, mask_ratio)
        image_features = self.encode_image(image, mask_ratio)
        text_features = self.encode_text(text)

        image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        text_features = text_features / text_features.norm(dim=-1, keepdim=True)

        return image_features, text_features, self.logit_scale.exp()

    def get_similarity(self, image, text):
        image_features = self.encode_image(image)
        text_features = self.encode_text(text)

        # normalized features
        image_features = image_features / image_features.norm(dim=1, keepdim=True)
        text_features = text_features / text_features.norm(dim=1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_image = logit_scale * image_features @ text_features.t()
        logits_per_text = logits_per_image.t()

        # shape = [global_batch_size, global_batch_size]
        return logits_per_image, logits_per_text

class CLIPWithTwoTextEncoder(nn.Module):
    def __init__(self,
                 embed_dim: int,
                 # vision
                 image_resolution: int,
                 vision_layers: Union[Tuple[int, int, int, int], int],
                 vision_width: int,
                 vision_patch_size: int,
                 # text
                 vocab_size: int,
                 text_attention_probs_dropout_prob: float,
                 text_hidden_act: str,
                 text_hidden_dropout_prob: float,
                 text_hidden_size: int,
                 text_initializer_range: float,
                 text_intermediate_size: int,
                 text_max_position_embeddings: int,
                 text_num_attention_heads: int,
                 text_num_hidden_layers: int,
                 text_type_vocab_size: int,
                 tokenizer = _tokenizer,
                 # vision head width, added this param for ViT-H
                 vision_head_width: int = 64,
                 use_flash_attention: bool = False,
                 openai_clip_path: str = "/group/30042/kunyi/CLIP/clip-vit-large-patch14/",
                 ):
        super().__init__()

        if isinstance(vision_layers, (tuple, list)):
            vision_heads = vision_width * 32 // vision_head_width
            self.visual = ModifiedResNet(
                layers=vision_layers,
                output_dim=embed_dim,
                heads=vision_heads,
                input_resolution=image_resolution,
                width=vision_width
            )
        else:
            vision_heads = vision_width // vision_head_width
            self.visual = VisualTransformer(
                input_resolution=image_resolution,
                patch_size=vision_patch_size,
                width=vision_width,
                layers=vision_layers,
                heads=vision_heads,
                output_dim=embed_dim,
                use_flash_attention=use_flash_attention
            )

        self.bert_config = BertConfig(
            vocab_size_or_config_json_file=vocab_size,
            hidden_size=text_hidden_size,
            num_hidden_layers=text_num_hidden_layers,
            num_attention_heads=text_num_attention_heads,
            intermediate_size=text_intermediate_size,
            hidden_act=text_hidden_act,
            hidden_dropout_prob=text_hidden_dropout_prob,
            attention_probs_dropout_prob=text_attention_probs_dropout_prob,
            max_position_embeddings=text_max_position_embeddings,
            type_vocab_size=text_type_vocab_size,
            initializer_range=text_initializer_range,
            layer_norm_eps=1e-12,
            use_flash_attention=use_flash_attention
        )
        self.bert = BertModel(self.bert_config)

        self.text_projection = nn.Parameter(torch.empty(text_hidden_size, embed_dim))
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        self.tokenizer = tokenizer

        print('loading openai clip text encoder')
        self.openai_clip_text_encoder = CLIPTextModelWithProjection.from_pretrained(openai_clip_path)

        self.initialize_parameters()


    def initialize_parameters(self):
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        if isinstance(self.visual, ModifiedResNet):
            if self.visual.attnpool is not None:
                std = self.visual.attnpool.c_proj.in_features ** -0.5
                nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)

            for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
                for name, param in resnet_block.named_parameters():
                    if name.endswith("bn3.weight"):
                        nn.init.zeros_(param)

        if self.text_projection is not None:
            nn.init.normal_(self.text_projection, std=self.bert_config.hidden_size ** -0.5)

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.visual.set_grad_checkpointing(enable)
        self.bert.set_grad_checkpointing(enable)

    @property
    def dtype(self):
        return self.visual.conv1.weight.dtype

    def encode_image(self, image, mask_ratio=0):
        if isinstance(self.visual, ModifiedResNet):
            # mask_ratio > 0 (FLIP strategy) is currently only implemented for VisualTransformer.
            return self.visual(image.type(self.dtype))
        return self.visual(image.type(self.dtype), mask_ratio)

    def encode_text(self, text):
        pad_index = self.tokenizer.vocab['[PAD]']
        attn_mask = text.ne(pad_index).type(self.dtype)
        x = self.bert(text, attention_mask=attn_mask)[0].type(self.dtype) # [batch_size, seq_length, hidden_size]
        return x[:, 0, :] @ self.text_projection

    def encode_text_ENG(self, text):
        text_emb = self.openai_clip_text_encoder(text).text_embeds
        return text_emb

    def forward(self, image, text, is_ENG=False, mask_ratio=0):
        assert image is not None or text is not None, "text and image cannot both be None!"

        if image is None:
            if not is_ENG:
                return self.encode_text(text)
            else:
                return self.encode_text_ENG(text)
        elif text is None:
            return self.encode_image(image, mask_ratio)
        image_features = self.encode_image(image, mask_ratio)

        if not is_ENG:
            text_features = self.encode_text(text)
        else:
            text_features = self.encode_text_ENG(text)

        image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        text_features = text_features / text_features.norm(dim=-1, keepdim=True)

        return image_features, text_features, self.logit_scale.exp()

    def get_similarity(self, image, text):
        image_features = self.encode_image(image)
        text_features = self.encode_text(text)

        # normalized features
        image_features = image_features / image_features.norm(dim=1, keepdim=True)
        text_features = text_features / text_features.norm(dim=1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_image = logit_scale * image_features @ text_features.t()
        logits_per_text = logits_per_image.t()

        # shape = [global_batch_size, global_batch_size]
        return logits_per_image, logits_per_text

class CLIP4SD(nn.Module):
    def __init__(self,
                 embed_dim: int,
                 # vision
                 image_resolution: int,
                 vision_layers: Union[Tuple[int, int, int, int], int],
                 vision_width: int,
                 vision_patch_size: int,
                 # text
                 vocab_size: int,
                 text_attention_probs_dropout_prob: float,
                 text_hidden_act: str,
                 text_hidden_dropout_prob: float,
                 text_hidden_size: int,
                 text_initializer_range: float,
                 text_intermediate_size: int,
                 text_max_position_embeddings: int,
                 text_num_attention_heads: int,
                 text_num_hidden_layers: int,
                 text_type_vocab_size: int,
                 tokenizer = _tokenizer,
                 # vision head width, added this param for ViT-H
                 vision_head_width: int = 64,
                 use_flash_attention: bool = False,
                 ):
        super().__init__()

        if isinstance(vision_layers, (tuple, list)):
            vision_heads = vision_width * 32 // vision_head_width
            self.visual = ModifiedResNet(
                layers=vision_layers,
                output_dim=embed_dim,
                heads=vision_heads,
                input_resolution=image_resolution,
                width=vision_width
            )
        else:
            vision_heads = vision_width // vision_head_width
            self.visual = VisualTransformer(
                input_resolution=image_resolution,
                patch_size=vision_patch_size,
                width=vision_width,
                layers=vision_layers,
                heads=vision_heads,
                output_dim=embed_dim,
                use_flash_attention=use_flash_attention
            )

        self.bert_config = BertConfig(
            vocab_size_or_config_json_file=vocab_size,
            hidden_size=text_hidden_size,
            num_hidden_layers=text_num_hidden_layers,
            num_attention_heads=text_num_attention_heads,
            intermediate_size=text_intermediate_size,
            hidden_act=text_hidden_act,
            hidden_dropout_prob=text_hidden_dropout_prob,
            attention_probs_dropout_prob=text_attention_probs_dropout_prob,
            max_position_embeddings=text_max_position_embeddings,
            type_vocab_size=text_type_vocab_size,
            initializer_range=text_initializer_range,
            layer_norm_eps=1e-12,
            use_flash_attention=use_flash_attention
        )
        self.bert = BertModel(self.bert_config)

        self.text_projection = nn.Parameter(torch.empty(text_hidden_size, embed_dim))
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        self.tokenizer = tokenizer
        self.ln_final = LayerNorm(text_hidden_size)

        self.initialize_parameters()

    def initialize_parameters(self):
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))

        if isinstance(self.visual, ModifiedResNet):
            if self.visual.attnpool is not None:
                std = self.visual.attnpool.c_proj.in_features ** -0.5
                nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std)
                nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std)

            for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]:
                for name, param in resnet_block.named_parameters():
                    if name.endswith("bn3.weight"):
                        nn.init.zeros_(param)

        if self.text_projection is not None:
            nn.init.normal_(self.text_projection, std=self.bert_config.hidden_size ** -0.5)

    @torch.jit.ignore
    def set_grad_checkpointing(self, enable=True):
        self.visual.set_grad_checkpointing(enable)
        self.bert.set_grad_checkpointing(enable)

    @property
    def dtype(self):
        return self.visual.conv1.weight.dtype

    def encode_image(self, image, mask_ratio=0):
        if isinstance(self.visual, ModifiedResNet):
            # mask_ratio > 0 (FLIP strategy) is currently only implemented for VisualTransformer.
            return self.visual(image.type(self.dtype))
        return self.visual(image.type(self.dtype), mask_ratio)

    # def encode_text(self, text):
    #     pad_index = self.tokenizer.vocab['[PAD]']
    #     attn_mask = text.ne(pad_index).type(self.dtype)
    #     x = self.bert(text, attention_mask=attn_mask)[0].type(self.dtype) # [batch_size, seq_length, hidden_size]
    #     return x[:, 0, :] @ self.text_projection
    def encode_text(self, text):
        pad_index = self.tokenizer.vocab['[PAD]']
        attn_mask = text.ne(pad_index).type(self.dtype)
        x = self.bert(text, attention_mask=attn_mask)[0].type(self.dtype) # [batch_size, seq_length, hidden_size]
        x = self.ln_final(x).type(self.dtype)
        x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
        return x

    def forward(self, image, text, mask_ratio=0):
        assert image is not None or text is not None, "text and image cannot both be None!"

        if image is None:
            return self.encode_text(text)
        elif text is None:
            return self.encode_image(image)
        image_features = self.encode_image(image, mask_ratio)
        text_features = self.encode_text(text)

        image_features = image_features / image_features.norm(dim=-1, keepdim=True)
        text_features = text_features / text_features.norm(dim=-1, keepdim=True)

        return image_features, text_features, self.logit_scale.exp()

    def get_similarity(self, image, text):
        image_features = self.encode_image(image)
        text_features = self.encode_text(text)

        # normalized features
        image_features = image_features / image_features.norm(dim=1, keepdim=True)
        text_features = text_features / text_features.norm(dim=1, keepdim=True)

        # cosine similarity as logits
        logit_scale = self.logit_scale.exp()
        logits_per_image = logit_scale * image_features @ text_features.t()
        logits_per_text = logits_per_image.t()

        # shape = [global_batch_size, global_batch_size]
        return logits_per_image, logits_per_text

def convert_models_to_fp32(model):
    for p in model.parameters():
        p.data = p.data.float()
        if p.grad:
            p.grad.data = p.grad.data.float()


def convert_weights(model: nn.Module):
    """Convert applicable model parameters to fp16"""

    def _convert_weights_to_fp16(l):
        if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
            l.weight.data = l.weight.data.half()
            if l.bias is not None:
                l.bias.data = l.bias.data.half()

        if isinstance(l, nn.MultiheadAttention):
            for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
                tensor = getattr(l, attr)
                if tensor is not None:
                    tensor.data = tensor.data.half()

        if isinstance(l, BertModel):
            l.to(torch.half)

        for name in ["text_projection", "proj"]:
            try:
                if hasattr(l, name):
                    attr = getattr(l, name)
                    if attr is not None:
                        attr.data = attr.data.half()
            except:
                print('name', name)

    model.apply(_convert_weights_to_fp16)


def restore_model(model, clip_state_dict: dict, bert_state_dict: dict, use_flash_attention: bool):
    merged_state_dict = {}

    # use clip_state_dict to initialize the image encoder & logit scale
    if clip_state_dict is not None:
        for k, v in clip_state_dict.items():
            if k.startswith("visual") or k == "logit_scale":
                merged_state_dict[k] = v

    # use bert_state_dict to initialize the text encoder
    if bert_state_dict is not None:
        for k, v in bert_state_dict.items():
            if k.startswith("bert") and "bert.pooler" not in k:
                merged_state_dict[k] = v

    # adapt flash attention
    if use_flash_attention:
        merged_state_dict = convert_state_dict(merged_state_dict)

    convert_weights(model)
    resize_pos_embed(merged_state_dict, model)
    model.load_state_dict(merged_state_dict, strict=False)
    return model.eval()


def convert_state_dict(state_dict):
    """Adapt to Flash Attention"""
    if not state_dict:
        return state_dict

    prefix = 'module.' if list(state_dict.keys())[0].startswith('module') else ''

    if f'{prefix}visual.transformer.resblocks.0.attn.in_proj_weight' in state_dict:
        for k in list(state_dict.keys()):
            if 'attn.in_proj_weight' in k:
                state_dict[k.replace('attn.in_proj_weight', 'attn.Wqkv.weight')] = state_dict.pop(k)
            elif 'attn.in_proj_bias' in k:
                state_dict[k.replace('attn.in_proj_bias', 'attn.Wqkv.bias')] = state_dict.pop(k)
    elif f'{prefix}visual.transformer.resblocks.0.attn.Wqkv.weight' in state_dict:
        for k in list(state_dict.keys()):
            if 'attn.Wqkv.weight' in k:
                state_dict[k.replace('attn.Wqkv.weight', 'attn.in_proj_weight')] = state_dict.pop(k)
            elif 'attn.Wqkv.bias' in k:
                state_dict[k.replace('attn.Wqkv.bias', 'attn.in_proj_bias')] = state_dict.pop(k)

    if f'{prefix}bert.encoder.layer.0.attention.self.query.weight' in state_dict:
        i = 0
        while f'{prefix}bert.encoder.layer.{i}.attention.self.query.weight' in state_dict:
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.weight'] = torch.cat(
                (state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.query.weight'),
                 state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.key.weight'),
                 state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.value.weight'))
            )
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.bias'] = torch.cat(
                (state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.query.bias'),
                 state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.key.bias'),
                 state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.value.bias'))
            )
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.out_proj.weight'] = \
                state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.output.dense.weight')
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.out_proj.bias'] = \
                state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.output.dense.bias')
            i += 1
    elif f'{prefix}bert.encoder.layer.0.attention.self.Wqkv.weight' in state_dict:
        i = 0
        while f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.weight' in state_dict:
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.query.weight'], \
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.key.weight'], \
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.value.weight'] = \
                torch.chunk(state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.weight'), chunks=3)
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.query.bias'], \
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.key.bias'], \
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.value.bias'] = \
                torch.chunk(state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.bias'), chunks=3)
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.output.dense.weight'] = \
                state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.out_proj.weight')
            state_dict[f'{prefix}bert.encoder.layer.{i}.attention.output.dense.bias'] = \
                state_dict.pop(f'module.bert.encoder.layer.{i}.attention.self.out_proj.bias')
            i += 1

    return state_dict


def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1, prefix=""):
    # Rescale the grid of position embeddings when loading from state_dict
    old_pos_embed = state_dict.get(prefix + 'visual.positional_embedding', None)
    model = model.module if hasattr(model, 'module') else model
    if old_pos_embed is None or not hasattr(model.visual, 'grid_size'):
        return
    grid_size = to_2tuple(model.visual.grid_size)
    extra_tokens = 1  # FIXME detect different token configs (ie no class token, or more)
    new_seq_len = grid_size[0] * grid_size[1] + extra_tokens
    if new_seq_len == old_pos_embed.shape[0]:
        return

    if extra_tokens:
        pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:]
    else:
        pos_emb_tok, pos_emb_img = None, old_pos_embed
    old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img))))

    logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size)
    pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2)
    pos_emb_img = F.interpolate(
        pos_emb_img,
        size=grid_size,
        mode=interpolation,
        align_corners=True,
    )
    pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0]
    if pos_emb_tok is not None:
        new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0)
    else:
        new_pos_embed = pos_emb_img
    state_dict[prefix + 'visual.positional_embedding'] = new_pos_embed


# From PyTorch internals
def _ntuple(n):
    def parse(x):
        if isinstance(x, collections.abc.Iterable):
            return x
        return tuple(repeat(x, n))
    return parse


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = lambda n, x: _ntuple(n)(x)