TechxGenus commited on
Commit
e9fdf80
1 Parent(s): 5ab4a80

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: deepseek
4
+ license_link: https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL
5
+ ---
6
+
7
+ <!-- markdownlint-disable first-line-h1 -->
8
+ <!-- markdownlint-disable html -->
9
+ <!-- markdownlint-disable no-duplicate-header -->
10
+
11
+ <div align="center">
12
+ <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V2" />
13
+ </div>
14
+ <hr>
15
+ <div align="center" style="line-height: 1;">
16
+ <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
17
+ <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
18
+ </a>
19
+ <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
20
+ <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V2-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
21
+ </a>
22
+ <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
23
+ <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
24
+ </a>
25
+ </div>
26
+
27
+ <div align="center" style="line-height: 1;">
28
+ <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
29
+ <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
30
+ </a>
31
+ <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
32
+ <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
33
+ </a>
34
+ <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
35
+ <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
36
+ </a>
37
+ </div>
38
+
39
+ <div align="center" style="line-height: 1;">
40
+ <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-CODE" style="margin: 2px;">
41
+ <img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
42
+ </a>
43
+ <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL" style="margin: 2px;">
44
+ <img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
45
+ </a>
46
+ </div>
47
+
48
+ <p align="center">
49
+ <a href="#2-model-downloads">Model Download</a> |
50
+ <a href="#3-evaluation-results">Evaluation Results</a> |
51
+ <a href="#4-model-architecture">Model Architecture</a> |
52
+ <a href="#6-api-platform">API Platform</a> |
53
+ <a href="#8-license">License</a> |
54
+ <a href="#9-citation">Citation</a>
55
+ </p>
56
+
57
+ <p align="center">
58
+ <a href="https://arxiv.org/abs/2405.04434"><b>Paper Link</b>👁️</a>
59
+ </p>
60
+
61
+ AWQ quantized version of DeepSeek-V2-Lite-Chat model.
62
+
63
+ ---
64
+
65
+ # DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
66
+
67
+ ## 1. Introduction
68
+
69
+ Last week, the release and buzz around DeepSeek-V2 have ignited widespread interest in MLA (Multi-head Latent Attention)! Many in the community suggested open-sourcing a smaller MoE model for in-depth research. And now DeepSeek-V2-Lite comes out:
70
+
71
+ - 16B total params, 2.4B active params, scratch training with 5.7T tokens
72
+ - Outperforms 7B dense and 16B MoE on many English & Chinese benchmarks
73
+ - Deployable on single 40G GPU, fine-tunable on 8x80G GPUs
74
+
75
+ DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation.
76
+
77
+ ## 2. News
78
+
79
+ - 2024.05.16: We released the DeepSeek-V2-Lite.
80
+ - 2024.05.06: We released the DeepSeek-V2.
81
+
82
+ ## 3. Model Downloads
83
+
84
+ With DeepSeek-V2, we are open-sourcing base and chat models across two sizes:
85
+
86
+ <div align="center">
87
+
88
+ | **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
89
+ | :------------: | :------------: | :------------: | :------------: | :------------: |
90
+ | DeepSeek-V2-Lite | 16B | 2.4B | 32k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite) |
91
+ | DeepSeek-V2-Lite-Chat (SFT) | 16B | 2.4B | 32k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat) |
92
+ | DeepSeek-V2 | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2) |
93
+ | DeepSeek-V2-Chat (RL) | 236B | 21B | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat) |
94
+
95
+ </div>
96
+
97
+ Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively.
98
+
99
+ ## 4. Evaluation Results
100
+ ### Base Model
101
+ #### Standard Benchmark
102
+ <div align="center">
103
+
104
+ | **Benchmark** | **Domain** | **DeepSeek 7B (Dense)** | **DeepSeekMoE 16B** | **DeepSeek-V2-Lite (MoE-16B)** |
105
+ |:-------------:|:----------:|:--------------:|:-----------------:|:--------------------------:|
106
+ | **Architecture** | - | MHA+Dense | MHA+MoE | MLA+MoE |
107
+ | **MMLU** | English | 48.2 | 45.0 | 58.3 |
108
+ | **BBH** | English | 39.5 | 38.9 | 44.1 |
109
+ | **C-Eval** | Chinese | 45.0 | 40.6 | 60.3 |
110
+ | **CMMLU** | Chinese | 47.2 | 42.5 | 64.3 |
111
+ | **HumanEval** | Code | 26.2 | 26.8 | 29.9 |
112
+ | **MBPP** | Code | 39.0 | 39.2 | 43.2 |
113
+ | **GSM8K** | Math | 17.4 | 18.8 | 41.1 |
114
+ | **Math** | Math | 3.3 | 4.3 | 17.1 |
115
+
116
+ </div>
117
+ For more evaluation details, such as few-shot settings and prompts, please check our paper.
118
+
119
+
120
+ ### Chat Model
121
+ #### Standard Benchmark
122
+
123
+ <div align="center">
124
+
125
+ | Benchmark | Domain | DeepSeek 7B Chat (SFT) | DeepSeekMoE 16B Chat (SFT) | DeepSeek-V2-Lite 16B Chat (SFT) |
126
+ |:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:|
127
+ | **MMLU** | English | 49.7 | 47.2 | 55.7 |
128
+ | **BBH** | English | 43.1 | 42.2 | 48.1 |
129
+ | **C-Eval** | Chinese | 44.7 | 40.0 | 60.1 |
130
+ | **CMMLU** | Chinese | 51.2 | 49.3 | 62.5 |
131
+ | **HumanEval** | Code | 45.1 | 45.7 | 57.3 |
132
+ | **MBPP** | Code | 39.0 | 46.2 | 45.8 |
133
+ | **GSM8K** | Math | 62.6 | 62.2 | 72.0 |
134
+ | **Math** | Math | 14.7 | 15.2 | 27.9 |
135
+
136
+ </div>
137
+
138
+
139
+ ## 5. Model Architecture
140
+ DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference:
141
+ - For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference.
142
+ - For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs.
143
+
144
+ <p align="center">
145
+ <img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" />
146
+ </p>
147
+
148
+ DeepSeek-V2-Lite has 27 layers and a hidden dimension of 2048. It also employs MLA and has 16 attention heads, where each head has a dimension of 128. Its KV compression dimension is 512, but slightly different from DeepSeek-V2, it does not compress the queries. For the decoupled queries and key, it has a per-head dimension of 64. DeepSeek-V2-Lite also employs DeepSeekMoE, and all FFNs except for the first layer are replaced with MoE layers. Each MoE layer consists of 2 shared experts and 64 routed experts, where the intermediate hidden dimension of each expert is 1408. Among the routed experts, 6 experts will be activated for each token. Under this configuration, DeepSeek-V2-Lite comprises 15.7B total parameters, of which 2.4B are activated for each token.
149
+
150
+
151
+ ## 6. Training Details
152
+ DeepSeek-V2-Lite is also trained from scratch on the same pre-training corpus of DeepSeek-V2, which is not polluted by any SFT data. It uses the AdamW optimizer with hyper-parameters set to $\beta_1=0.9$, $\beta_2=0.95$, and $\mathrm{weight_decay}=0.1$. The learning rate is scheduled using a warmup-and-step-decay strategy. Initially, the learning rate linearly increases from 0 to the maximum value during the first 2K steps. Subsequently, the learning rate is multiplied by 0.316 after training about 80% of tokens, and again by 0.316 after training about 90% of tokens. The maximum learning rate is set to $4.2 \times 10^{-4}$, and the gradient clipping norm is set to 1.0. We do not employ the batch size scheduling strategy for it, and it is trained with a constant batch size of 4608 sequences. During pre-training, we set the maximum sequence length to 4K, and train DeepSeek-V2-Lite on 5.7T tokens. We leverage pipeline parallelism to deploy different layers of it on different devices, but for each layer, all experts will be deployed on the same device. Therefore, we only employ a small expert-level balance loss with $\alpha_{1}=0.001$, and do not employ device-level balance loss and communication balance loss for it. After pre-training, we also perform long-context extension, SFT for DeepSeek-V2-Lite and get a chat model called DeepSeek-V2-Lite Chat.
153
+
154
+
155
+
156
+ ## 7. How to run locally
157
+
158
+ **To utilize DeepSeek-V2-Lite in BF16 format for inference, 40GB*1 GPU is required.**
159
+ ### Inference with Huggingface's Transformers
160
+ You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
161
+
162
+ #### Text Completion
163
+ ```python
164
+ import torch
165
+ from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
166
+
167
+ model_name = "deepseek-ai/DeepSeek-V2-Lite"
168
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
169
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
170
+ model.generation_config = GenerationConfig.from_pretrained(model_name)
171
+ model.generation_config.pad_token_id = model.generation_config.eos_token_id
172
+
173
+ text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
174
+ inputs = tokenizer(text, return_tensors="pt")
175
+ outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
176
+
177
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
178
+ print(result)
179
+ ```
180
+
181
+ #### Chat Completion
182
+ ```python
183
+ import torch
184
+ from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
185
+
186
+ model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat"
187
+ tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
188
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
189
+ model.generation_config = GenerationConfig.from_pretrained(model_name)
190
+ model.generation_config.pad_token_id = model.generation_config.eos_token_id
191
+
192
+ messages = [
193
+ {"role": "user", "content": "Write a piece of quicksort code in C++"}
194
+ ]
195
+ input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
196
+ outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
197
+
198
+ result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
199
+ print(result)
200
+ ```
201
+
202
+ The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository.
203
+
204
+ An example of chat template is as belows:
205
+
206
+ ```bash
207
+ <|begin▁of▁sentence|>User: {user_message_1}
208
+
209
+ Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
210
+
211
+ Assistant:
212
+ ```
213
+
214
+ You can also add an optional system message:
215
+
216
+ ```bash
217
+ <|begin▁of▁sentence|>{system_message}
218
+
219
+ User: {user_message_1}
220
+
221
+ Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
222
+
223
+ Assistant:
224
+ ```
225
+
226
+ ### Inference with vLLM (recommended)
227
+ To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.
228
+
229
+ ```python
230
+ from transformers import AutoTokenizer
231
+ from vllm import LLM, SamplingParams
232
+
233
+ max_model_len, tp_size = 8192, 1
234
+ model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat"
235
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
236
+ llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
237
+ sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
238
+
239
+ messages_list = [
240
+ [{"role": "user", "content": "Who are you?"}],
241
+ [{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}],
242
+ [{"role": "user", "content": "Write a piece of quicksort code in C++."}],
243
+ ]
244
+
245
+ prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
246
+
247
+ outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
248
+
249
+ generated_text = [output.outputs[0].text for output in outputs]
250
+ print(generated_text)
251
+ ```
252
+
253
+ ### LangChain Support
254
+ Since our API is compatible with OpenAI, you can easily use it in [langchain](https://www.langchain.com/).
255
+ Here is an example:
256
+
257
+ ```
258
+ from langchain_openai import ChatOpenAI
259
+ llm = ChatOpenAI(
260
+ model='deepseek-chat',
261
+ openai_api_key=<your-deepseek-api-key>,
262
+ openai_api_base='https://api.deepseek.com/v1',
263
+ temperature=0.85,
264
+ max_tokens=8000)
265
+ ```
266
+ ## 8. License
267
+ This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use.
268
+
269
+ ## 9. Citation
270
+ ```
271
+ @misc{deepseekv2,
272
+ title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model},
273
+ author={DeepSeek-AI},
274
+ year={2024},
275
+ eprint={2405.04434},
276
+ archivePrefix={arXiv},
277
+ primaryClass={cs.CL}
278
+ }
279
+ ```
280
+
281
+ ## 10. Contact
282
+ If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).
config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deepseek-ai/DeepSeek-V2-Lite-Chat",
3
+ "architectures": [
4
+ "DeepseekV2ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_deepseek.DeepseekV2Config",
10
+ "AutoModel": "modeling_deepseek.DeepseekV2Model",
11
+ "AutoModelForCausalLM": "modeling_deepseek.DeepseekV2ForCausalLM"
12
+ },
13
+ "aux_loss_alpha": 0.001,
14
+ "bos_token_id": 100000,
15
+ "eos_token_id": 100001,
16
+ "ep_size": 1,
17
+ "first_k_dense_replace": 1,
18
+ "hidden_act": "silu",
19
+ "hidden_size": 2048,
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 10944,
22
+ "kv_lora_rank": 512,
23
+ "max_position_embeddings": 163840,
24
+ "model_type": "deepseek_v2",
25
+ "moe_intermediate_size": 1408,
26
+ "moe_layer_freq": 1,
27
+ "n_group": 1,
28
+ "n_routed_experts": 64,
29
+ "n_shared_experts": 2,
30
+ "norm_topk_prob": false,
31
+ "num_attention_heads": 16,
32
+ "num_experts_per_tok": 6,
33
+ "num_hidden_layers": 27,
34
+ "num_key_value_heads": 16,
35
+ "pretraining_tp": 1,
36
+ "q_lora_rank": null,
37
+ "qk_nope_head_dim": 128,
38
+ "qk_rope_head_dim": 64,
39
+ "quantization_config": {
40
+ "bits": 4,
41
+ "group_size": 64,
42
+ "modules_to_not_convert": null,
43
+ "quant_method": "awq",
44
+ "version": "gemm",
45
+ "zero_point": true
46
+ },
47
+ "rms_norm_eps": 1e-06,
48
+ "rope_scaling": {
49
+ "beta_fast": 32,
50
+ "beta_slow": 1,
51
+ "factor": 40,
52
+ "mscale": 0.707,
53
+ "mscale_all_dim": 0.707,
54
+ "original_max_position_embeddings": 4096,
55
+ "type": "yarn"
56
+ },
57
+ "rope_theta": 10000,
58
+ "routed_scaling_factor": 1.0,
59
+ "scoring_func": "softmax",
60
+ "seq_aux": true,
61
+ "tie_word_embeddings": false,
62
+ "topk_group": 1,
63
+ "topk_method": "greedy",
64
+ "torch_dtype": "float16",
65
+ "transformers_version": "4.42.3",
66
+ "use_cache": true,
67
+ "v_head_dim": 128,
68
+ "vocab_size": 102400
69
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV2Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V2.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 102400):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV2Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_attention_heads (`int`, *optional*, defaults to 32):
30
+ Number of attention heads for each attention layer in the Transformer decoder.
31
+ n_shared_experts (`int`, *optional*, defaults to None):
32
+ Number of shared experts, None means dense model.
33
+ n_routed_experts (`int`, *optional*, defaults to None):
34
+ Number of routed experts, None means dense model.
35
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
36
+ Scaling factor or routed experts.
37
+ topk_method (`str`, *optional*, defaults to `gready`):
38
+ Topk method used in routed gate.
39
+ n_group (`int`, *optional*, defaults to None):
40
+ Number of groups for routed experts.
41
+ topk_group (`int`, *optional*, defaults to None):
42
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
43
+ num_experts_per_tok (`int`, *optional*, defaults to None):
44
+ Number of selected experts, None means dense model.
45
+ moe_layer_freq (`int`, *optional*, defaults to 1):
46
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
47
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
48
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
49
+ \--k dense layers--/
50
+ norm_topk_prob (`bool`, *optional*, defaults to False):
51
+ Whether to normalize the weights of the routed experts.
52
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
53
+ Method of computing expert weights.
54
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
55
+ Auxiliary loss weight coefficient.
56
+ seq_aux = (`bool`, *optional*, defaults to True):
57
+ Whether to compute the auxiliary loss for each individual sample.
58
+ num_key_value_heads (`int`, *optional*):
59
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
60
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
61
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
62
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
63
+ by meanpooling all the original heads within that group. For more details checkout [this
64
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
65
+ `num_attention_heads`.
66
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
67
+ The non-linear activation function (function or string) in the decoder.
68
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
69
+ The maximum sequence length that this model might ever be used with.
70
+ initializer_range (`float`, *optional*, defaults to 0.02):
71
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
72
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
73
+ The epsilon used by the rms normalization layers.
74
+ use_cache (`bool`, *optional*, defaults to `True`):
75
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
76
+ relevant if `config.is_decoder=True`.
77
+ pad_token_id (`int`, *optional*):
78
+ Padding token id.
79
+ bos_token_id (`int`, *optional*, defaults to 1):
80
+ Beginning of stream token id.
81
+ eos_token_id (`int`, *optional*, defaults to 2):
82
+ End of stream token id.
83
+ pretraining_tp (`int`, *optional*, defaults to 1):
84
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
85
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
86
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
87
+ issue](https://github.com/pytorch/pytorch/issues/76232).
88
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
89
+ Whether to tie weight embeddings
90
+ rope_theta (`float`, *optional*, defaults to 10000.0):
91
+ The base period of the RoPE embeddings.
92
+ rope_scaling (`Dict`, *optional*):
93
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
94
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
95
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
96
+ `max_position_embeddings` to the expected new maximum.
97
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
98
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
99
+ attention_dropout (`float`, *optional*, defaults to 0.0):
100
+ The dropout ratio for the attention probabilities.
101
+
102
+ ```python
103
+ >>> from transformers import DeepseekV2Model, DeepseekV2Config
104
+
105
+ >>> # Initializing a Deepseek-V2 style configuration
106
+ >>> configuration = DeepseekV2Config()
107
+
108
+ >>> # Accessing the model configuration
109
+ >>> configuration = model.config
110
+ ```"""
111
+
112
+ model_type = "deepseek_v2"
113
+ keys_to_ignore_at_inference = ["past_key_values"]
114
+
115
+ def __init__(
116
+ self,
117
+ vocab_size=102400,
118
+ hidden_size=4096,
119
+ intermediate_size=11008,
120
+ moe_intermediate_size = 1407,
121
+ num_hidden_layers=30,
122
+ num_attention_heads=32,
123
+ num_key_value_heads=32,
124
+ n_shared_experts = None,
125
+ n_routed_experts = None,
126
+ ep_size = 1,
127
+ routed_scaling_factor = 1.0,
128
+ kv_lora_rank = 512,
129
+ q_lora_rank = 1536,
130
+ qk_rope_head_dim = 64,
131
+ v_head_dim = 128,
132
+ qk_nope_head_dim = 128,
133
+ topk_method = 'gready',
134
+ n_group = None,
135
+ topk_group = None,
136
+ num_experts_per_tok = None,
137
+ moe_layer_freq = 1,
138
+ first_k_dense_replace = 0,
139
+ norm_topk_prob = False,
140
+ scoring_func = 'softmax',
141
+ aux_loss_alpha = 0.001,
142
+ seq_aux = True,
143
+ hidden_act="silu",
144
+ max_position_embeddings=2048,
145
+ initializer_range=0.02,
146
+ rms_norm_eps=1e-6,
147
+ use_cache=True,
148
+ pad_token_id=None,
149
+ bos_token_id=100000,
150
+ eos_token_id=100001,
151
+ pretraining_tp=1,
152
+ tie_word_embeddings=False,
153
+ rope_theta=10000.0,
154
+ rope_scaling=None,
155
+ attention_bias=False,
156
+ attention_dropout=0.0,
157
+ **kwargs,
158
+ ):
159
+ self.vocab_size = vocab_size
160
+ self.max_position_embeddings = max_position_embeddings
161
+ self.hidden_size = hidden_size
162
+ self.intermediate_size = intermediate_size
163
+ self.moe_intermediate_size = moe_intermediate_size
164
+ self.num_hidden_layers = num_hidden_layers
165
+ self.num_attention_heads = num_attention_heads
166
+ self.n_shared_experts = n_shared_experts
167
+ self.n_routed_experts = n_routed_experts
168
+ self.ep_size = ep_size
169
+ self.routed_scaling_factor = routed_scaling_factor
170
+ self.kv_lora_rank = kv_lora_rank
171
+ self.q_lora_rank = q_lora_rank
172
+ self.qk_rope_head_dim = qk_rope_head_dim
173
+ self.v_head_dim = v_head_dim
174
+ self.qk_nope_head_dim = qk_nope_head_dim
175
+ self.topk_method = topk_method
176
+ self.n_group = n_group
177
+ self.topk_group = topk_group
178
+ self.num_experts_per_tok = num_experts_per_tok
179
+ self.moe_layer_freq = moe_layer_freq
180
+ self.first_k_dense_replace = first_k_dense_replace
181
+ self.norm_topk_prob = norm_topk_prob
182
+ self.scoring_func = scoring_func
183
+ self.aux_loss_alpha = aux_loss_alpha
184
+ self.seq_aux = seq_aux
185
+ # for backward compatibility
186
+ if num_key_value_heads is None:
187
+ num_key_value_heads = num_attention_heads
188
+
189
+ self.num_key_value_heads = num_key_value_heads
190
+ self.hidden_act = hidden_act
191
+ self.initializer_range = initializer_range
192
+ self.rms_norm_eps = rms_norm_eps
193
+ self.pretraining_tp = pretraining_tp
194
+ self.use_cache = use_cache
195
+ self.rope_theta = rope_theta
196
+ self.rope_scaling = rope_scaling
197
+ self.attention_bias = attention_bias
198
+ self.attention_dropout = attention_dropout
199
+
200
+ super().__init__(
201
+ pad_token_id=pad_token_id,
202
+ bos_token_id=bos_token_id,
203
+ eos_token_id=eos_token_id,
204
+ tie_word_embeddings=tie_word_embeddings,
205
+ **kwargs,
206
+ )
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 100000,
4
+ "do_sample": true,
5
+ "eos_token_id": 100001,
6
+ "temperature": 0.3,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.42.3"
9
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3ce643aff668a2a6234d5d684bd5ec109d30ef5444462e6f21c8118c6d3d7af
3
+ size 5000045752
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6991191b1bb8bda54c8fb14f49225e0b3994f3094b7c2d6486f62cc211c25f39
3
+ size 4086561120
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_deepseek.py ADDED
@@ -0,0 +1,1916 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch DeepSeek model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ )
38
+ from transformers.modeling_outputs import (
39
+ BaseModelOutputWithPast,
40
+ CausalLMOutputWithPast,
41
+ SequenceClassifierOutputWithPast,
42
+ )
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.pytorch_utils import (
45
+ ALL_LAYERNORM_LAYERS,
46
+ is_torch_greater_or_equal_than_1_13,
47
+ )
48
+ from transformers.utils import (
49
+ add_start_docstrings,
50
+ add_start_docstrings_to_model_forward,
51
+ is_flash_attn_2_available,
52
+ is_flash_attn_greater_or_equal_2_10,
53
+ logging,
54
+ replace_return_docstrings,
55
+ )
56
+ from transformers.utils.import_utils import is_torch_fx_available
57
+ from .configuration_deepseek import DeepseekV2Config
58
+ import torch.distributed as dist
59
+ import numpy as np
60
+
61
+ if is_flash_attn_2_available():
62
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
63
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
64
+
65
+
66
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
67
+ # It means that the function will not be traced through and simply appear as a node in the graph.
68
+ if is_torch_fx_available():
69
+ if not is_torch_greater_or_equal_than_1_13:
70
+ import torch.fx
71
+
72
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
73
+
74
+
75
+ logger = logging.get_logger(__name__)
76
+
77
+ _CONFIG_FOR_DOC = "DeepseekV2Config"
78
+
79
+
80
+ def _get_unpad_data(attention_mask):
81
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
84
+ cu_seqlens = F.pad(
85
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
86
+ )
87
+ return (
88
+ indices,
89
+ cu_seqlens,
90
+ max_seqlen_in_batch,
91
+ )
92
+
93
+
94
+ class DeepseekV2RMSNorm(nn.Module):
95
+ def __init__(self, hidden_size, eps=1e-6):
96
+ """
97
+ DeepseekV2RMSNorm is equivalent to T5LayerNorm
98
+ """
99
+ super().__init__()
100
+ self.weight = nn.Parameter(torch.ones(hidden_size))
101
+ self.variance_epsilon = eps
102
+
103
+ def forward(self, hidden_states):
104
+ input_dtype = hidden_states.dtype
105
+ hidden_states = hidden_states.to(torch.float32)
106
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
+ return self.weight * hidden_states.to(input_dtype)
109
+
110
+
111
+ ALL_LAYERNORM_LAYERS.append(DeepseekV2RMSNorm)
112
+
113
+
114
+ class DeepseekV2RotaryEmbedding(nn.Module):
115
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
116
+ super().__init__()
117
+
118
+ self.dim = dim
119
+ self.max_position_embeddings = max_position_embeddings
120
+ self.base = base
121
+ inv_freq = 1.0 / (
122
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
123
+ )
124
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
125
+
126
+ # Build here to make `torch.jit.trace` work.
127
+ self._set_cos_sin_cache(
128
+ seq_len=max_position_embeddings,
129
+ device=self.inv_freq.device,
130
+ dtype=torch.get_default_dtype(),
131
+ )
132
+ self.max_seq_len_cached = None
133
+
134
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
135
+ self.max_seq_len_cached = seq_len
136
+ t = torch.arange(
137
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
138
+ )
139
+
140
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
141
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
142
+ emb = torch.cat((freqs, freqs), dim=-1)
143
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
144
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
145
+
146
+ def forward(self, x, seq_len=None):
147
+ # x: [bs, num_attention_heads, seq_len, head_size]
148
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
149
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
150
+
151
+ return (
152
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
153
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
154
+ )
155
+
156
+
157
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV2
158
+ class DeepseekV2LinearScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
159
+ """DeepseekV2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
160
+
161
+ def __init__(
162
+ self,
163
+ dim,
164
+ max_position_embeddings=2048,
165
+ base=10000,
166
+ device=None,
167
+ scaling_factor=1.0,
168
+ ):
169
+ self.scaling_factor = scaling_factor
170
+ super().__init__(dim, max_position_embeddings, base, device)
171
+
172
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
173
+ self.max_seq_len_cached = seq_len
174
+ t = torch.arange(
175
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
176
+ )
177
+ t = t / self.scaling_factor
178
+
179
+ freqs = torch.outer(t, self.inv_freq)
180
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
181
+ emb = torch.cat((freqs, freqs), dim=-1)
182
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
183
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
184
+
185
+
186
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV2
187
+ class DeepseekV2DynamicNTKScalingRotaryEmbedding(DeepseekV2RotaryEmbedding):
188
+ """DeepseekV2RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
189
+
190
+ def __init__(
191
+ self,
192
+ dim,
193
+ max_position_embeddings=2048,
194
+ base=10000,
195
+ device=None,
196
+ scaling_factor=1.0,
197
+ ):
198
+ self.scaling_factor = scaling_factor
199
+ super().__init__(dim, max_position_embeddings, base, device)
200
+
201
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
202
+ self.max_seq_len_cached = seq_len
203
+
204
+ if seq_len > self.max_position_embeddings:
205
+ base = self.base * (
206
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
207
+ - (self.scaling_factor - 1)
208
+ ) ** (self.dim / (self.dim - 2))
209
+ inv_freq = 1.0 / (
210
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
211
+ )
212
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
213
+
214
+ t = torch.arange(
215
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
216
+ )
217
+
218
+ freqs = torch.outer(t, self.inv_freq)
219
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
220
+ emb = torch.cat((freqs, freqs), dim=-1)
221
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
222
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
223
+
224
+
225
+ # Inverse dim formula to find dim based on number of rotations
226
+ def yarn_find_correction_dim(
227
+ num_rotations, dim, base=10000, max_position_embeddings=2048
228
+ ):
229
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
230
+ 2 * math.log(base)
231
+ )
232
+
233
+
234
+ # Find dim range bounds based on rotations
235
+ def yarn_find_correction_range(
236
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
237
+ ):
238
+ low = math.floor(
239
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
240
+ )
241
+ high = math.ceil(
242
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
243
+ )
244
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
245
+
246
+
247
+ def yarn_get_mscale(scale=1, mscale=1):
248
+ if scale <= 1:
249
+ return 1.0
250
+ return 0.1 * mscale * math.log(scale) + 1.0
251
+
252
+
253
+ def yarn_linear_ramp_mask(min, max, dim):
254
+ if min == max:
255
+ max += 0.001 # Prevent singularity
256
+
257
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
258
+ ramp_func = torch.clamp(linear_func, 0, 1)
259
+ return ramp_func
260
+
261
+
262
+ class DeepseekV2YarnRotaryEmbedding(DeepseekV2RotaryEmbedding):
263
+
264
+ def __init__(
265
+ self,
266
+ dim,
267
+ max_position_embeddings=2048,
268
+ base=10000,
269
+ device=None,
270
+ scaling_factor=1.0,
271
+ original_max_position_embeddings=4096,
272
+ beta_fast=32,
273
+ beta_slow=1,
274
+ mscale=1,
275
+ mscale_all_dim=0,
276
+ ):
277
+ self.scaling_factor = scaling_factor
278
+ self.original_max_position_embeddings = original_max_position_embeddings
279
+ self.beta_fast = beta_fast
280
+ self.beta_slow = beta_slow
281
+ self.mscale = mscale
282
+ self.mscale_all_dim = mscale_all_dim
283
+ super().__init__(dim, max_position_embeddings, base, device)
284
+
285
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
286
+ self.max_seq_len_cached = seq_len
287
+ dim = self.dim
288
+
289
+ freq_extra = 1.0 / (
290
+ self.base
291
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
292
+ )
293
+ freq_inter = 1.0 / (
294
+ self.scaling_factor
295
+ * self.base
296
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
297
+ )
298
+
299
+ low, high = yarn_find_correction_range(
300
+ self.beta_fast,
301
+ self.beta_slow,
302
+ dim,
303
+ self.base,
304
+ self.original_max_position_embeddings,
305
+ )
306
+ inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
307
+ device=device, dtype=torch.float32
308
+ )
309
+ inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
310
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
311
+
312
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
313
+
314
+ freqs = torch.outer(t, inv_freq)
315
+
316
+ _mscale = float(
317
+ yarn_get_mscale(self.scaling_factor, self.mscale)
318
+ / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
319
+ )
320
+
321
+ emb = torch.cat((freqs, freqs), dim=-1)
322
+ self.register_buffer(
323
+ "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
324
+ )
325
+ self.register_buffer(
326
+ "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
327
+ )
328
+
329
+
330
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
331
+ def rotate_half(x):
332
+ """Rotates half the hidden dims of the input."""
333
+ x1 = x[..., : x.shape[-1] // 2]
334
+ x2 = x[..., x.shape[-1] // 2 :]
335
+ return torch.cat((-x2, x1), dim=-1)
336
+
337
+
338
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
339
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
340
+ """Applies Rotary Position Embedding to the query and key tensors.
341
+
342
+ Args:
343
+ q (`torch.Tensor`): The query tensor.
344
+ k (`torch.Tensor`): The key tensor.
345
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
346
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
347
+ position_ids (`torch.Tensor`):
348
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
349
+ used to pass offsetted position ids when working with a KV-cache.
350
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
351
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
352
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
353
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
354
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
355
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
356
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
357
+ Returns:
358
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
359
+ """
360
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
361
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
362
+
363
+ b, h, s, d = q.shape
364
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
365
+
366
+ b, h, s, d = k.shape
367
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
368
+
369
+ q_embed = (q * cos) + (rotate_half(q) * sin)
370
+ k_embed = (k * cos) + (rotate_half(k) * sin)
371
+ return q_embed, k_embed
372
+
373
+
374
+ class DeepseekV2MLP(nn.Module):
375
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
376
+ super().__init__()
377
+ self.config = config
378
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
379
+ self.intermediate_size = (
380
+ config.intermediate_size if intermediate_size is None else intermediate_size
381
+ )
382
+
383
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
384
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
385
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
386
+ self.act_fn = ACT2FN[config.hidden_act]
387
+
388
+ def forward(self, x):
389
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
390
+ return down_proj
391
+
392
+
393
+ class MoEGate(nn.Module):
394
+ def __init__(self, config):
395
+ super().__init__()
396
+ self.config = config
397
+ self.top_k = config.num_experts_per_tok
398
+ self.n_routed_experts = config.n_routed_experts
399
+ self.routed_scaling_factor = config.routed_scaling_factor
400
+ self.scoring_func = config.scoring_func
401
+ self.alpha = config.aux_loss_alpha
402
+ self.seq_aux = config.seq_aux
403
+ self.topk_method = config.topk_method
404
+ self.n_group = config.n_group
405
+ self.topk_group = config.topk_group
406
+
407
+ # topk selection algorithm
408
+ self.norm_topk_prob = config.norm_topk_prob
409
+ self.gating_dim = config.hidden_size
410
+ self.weight = nn.Parameter(
411
+ torch.empty((self.n_routed_experts, self.gating_dim))
412
+ )
413
+ self.reset_parameters()
414
+
415
+ def reset_parameters(self) -> None:
416
+ import torch.nn.init as init
417
+
418
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
419
+
420
+ def forward(self, hidden_states):
421
+ bsz, seq_len, h = hidden_states.shape
422
+ ### compute gating score
423
+ hidden_states = hidden_states.view(-1, h)
424
+ logits = F.linear(
425
+ hidden_states.type(torch.float32), self.weight.type(torch.float32), None
426
+ )
427
+ if self.scoring_func == "softmax":
428
+ scores = logits.softmax(dim=-1, dtype=torch.float32)
429
+ else:
430
+ raise NotImplementedError(
431
+ f"insupportable scoring function for MoE gating: {self.scoring_func}"
432
+ )
433
+
434
+ ### select top-k experts
435
+ if self.topk_method == "greedy":
436
+ topk_weight, topk_idx = torch.topk(
437
+ scores, k=self.top_k, dim=-1, sorted=False
438
+ )
439
+ elif self.topk_method == "group_limited_greedy":
440
+ group_scores = (
441
+ scores.view(bsz * seq_len, self.n_group, -1).max(dim=-1).values
442
+ ) # [n, n_group]
443
+ group_idx = torch.topk(
444
+ group_scores, k=self.topk_group, dim=-1, sorted=False
445
+ )[
446
+ 1
447
+ ] # [n, top_k_group]
448
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
449
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
450
+ score_mask = (
451
+ group_mask.unsqueeze(-1)
452
+ .expand(
453
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
454
+ )
455
+ .reshape(bsz * seq_len, -1)
456
+ ) # [n, e]
457
+ tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
458
+ topk_weight, topk_idx = torch.topk(
459
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
460
+ )
461
+
462
+ ### norm gate to sum 1
463
+ if self.top_k > 1 and self.norm_topk_prob:
464
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
465
+ topk_weight = topk_weight / denominator
466
+ else:
467
+ topk_weight = topk_weight * self.routed_scaling_factor
468
+ ### expert-level computation auxiliary loss
469
+ if self.training and self.alpha > 0.0:
470
+ scores_for_aux = scores
471
+ aux_topk = self.top_k
472
+ # always compute aux loss based on the naive greedy topk method
473
+ topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
474
+ if self.seq_aux:
475
+ scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
476
+ ce = torch.zeros(
477
+ bsz, self.n_routed_experts, device=hidden_states.device
478
+ )
479
+ ce.scatter_add_(
480
+ 1,
481
+ topk_idx_for_aux_loss,
482
+ torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device),
483
+ ).div_(seq_len * aux_topk / self.n_routed_experts)
484
+ aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(
485
+ dim=1
486
+ ).mean() * self.alpha
487
+ else:
488
+ mask_ce = F.one_hot(
489
+ topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts
490
+ )
491
+ ce = mask_ce.float().mean(0)
492
+ Pi = scores_for_aux.mean(0)
493
+ fi = ce * self.n_routed_experts
494
+ aux_loss = (Pi * fi).sum() * self.alpha
495
+ else:
496
+ aux_loss = None
497
+ return topk_idx, topk_weight, aux_loss
498
+
499
+
500
+ class AddAuxiliaryLoss(torch.autograd.Function):
501
+ """
502
+ The trick function of adding auxiliary (aux) loss,
503
+ which includes the gradient of the aux loss during backpropagation.
504
+ """
505
+
506
+ @staticmethod
507
+ def forward(ctx, x, loss):
508
+ assert loss.numel() == 1
509
+ ctx.dtype = loss.dtype
510
+ ctx.required_aux_loss = loss.requires_grad
511
+ return x
512
+
513
+ @staticmethod
514
+ def backward(ctx, grad_output):
515
+ grad_loss = None
516
+ if ctx.required_aux_loss:
517
+ grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
518
+ return grad_output, grad_loss
519
+
520
+
521
+ class DeepseekV2MoE(nn.Module):
522
+ """
523
+ A mixed expert module containing shared experts.
524
+ """
525
+
526
+ def __init__(self, config):
527
+ super().__init__()
528
+ self.config = config
529
+ self.num_experts_per_tok = config.num_experts_per_tok
530
+
531
+ if hasattr(config, "ep_size") and config.ep_size > 1:
532
+ assert config.ep_size == dist.get_world_size()
533
+ self.ep_size = config.ep_size
534
+ self.experts_per_rank = config.n_routed_experts // config.ep_size
535
+ self.ep_rank = dist.get_rank()
536
+ self.experts = nn.ModuleList(
537
+ [
538
+ (
539
+ DeepseekV2MLP(
540
+ config, intermediate_size=config.moe_intermediate_size
541
+ )
542
+ if i >= self.ep_rank * self.experts_per_rank
543
+ and i < (self.ep_rank + 1) * self.experts_per_rank
544
+ else None
545
+ )
546
+ for i in range(config.n_routed_experts)
547
+ ]
548
+ )
549
+ else:
550
+ self.ep_size = 1
551
+ self.experts_per_rank = config.n_routed_experts
552
+ self.ep_rank = 0
553
+ self.experts = nn.ModuleList(
554
+ [
555
+ DeepseekV2MLP(config, intermediate_size=config.moe_intermediate_size)
556
+ for i in range(config.n_routed_experts)
557
+ ]
558
+ )
559
+ self.gate = MoEGate(config)
560
+ if config.n_shared_experts is not None:
561
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
562
+ self.shared_experts = DeepseekV2MLP(
563
+ config=config, intermediate_size=intermediate_size
564
+ )
565
+
566
+ def forward(self, hidden_states):
567
+ identity = hidden_states
568
+ orig_shape = hidden_states.shape
569
+ topk_idx, topk_weight, aux_loss = self.gate(hidden_states)
570
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
571
+ flat_topk_idx = topk_idx.view(-1)
572
+ if self.training:
573
+ hidden_states = hidden_states.repeat_interleave(
574
+ self.num_experts_per_tok, dim=0
575
+ )
576
+ y = torch.empty_like(hidden_states)
577
+ for i, expert in enumerate(self.experts):
578
+ y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i])
579
+ y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
580
+ y = y.view(*orig_shape)
581
+ y = AddAuxiliaryLoss.apply(y, aux_loss)
582
+ else:
583
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
584
+ if self.config.n_shared_experts is not None:
585
+ y = y + self.shared_experts(identity)
586
+ return y
587
+
588
+ @torch.no_grad()
589
+ def moe_infer(self, x, topk_ids, topk_weight):
590
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
591
+ cnts.scatter_(1, topk_ids, 1)
592
+ tokens_per_expert = cnts.sum(dim=0)
593
+ idxs = topk_ids.view(-1).argsort()
594
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
595
+ sorted_tokens_shape = sorted_tokens.shape
596
+ if self.ep_size > 1:
597
+ tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
598
+ tokens_per_expert_group = tokens_per_expert.new_empty(
599
+ tokens_per_expert.shape[0]
600
+ )
601
+ dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
602
+ output_splits = (
603
+ tokens_per_expert_group.view(self.ep_size, -1)
604
+ .sum(1)
605
+ .cpu()
606
+ .numpy()
607
+ .tolist()
608
+ )
609
+ gathered_tokens = sorted_tokens.new_empty(
610
+ tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
611
+ )
612
+ input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
613
+ dist.all_to_all(
614
+ list(gathered_tokens.split(output_splits)),
615
+ list(sorted_tokens.split(input_split_sizes)),
616
+ )
617
+ tokens_per_expert_post_gather = tokens_per_expert_group.view(
618
+ self.ep_size, self.experts_per_rank
619
+ ).sum(dim=0)
620
+ gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
621
+ s = 0
622
+ for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
623
+ gatherd_idxs[s : s + k] = i % self.experts_per_rank
624
+ s += k
625
+ gatherd_idxs = gatherd_idxs.argsort()
626
+ sorted_tokens = gathered_tokens[gatherd_idxs]
627
+ tokens_per_expert = tokens_per_expert_post_gather
628
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
629
+
630
+ outputs = []
631
+ start_idx = 0
632
+ for i, num_tokens in enumerate(tokens_per_expert):
633
+ end_idx = start_idx + num_tokens
634
+ if num_tokens == 0:
635
+ continue
636
+ expert = self.experts[i + self.ep_rank * self.experts_per_rank]
637
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
638
+ expert_out = expert(tokens_for_this_expert)
639
+ outputs.append(expert_out)
640
+ start_idx = end_idx
641
+
642
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
643
+ if self.ep_size > 1:
644
+ new_x = torch.empty_like(outs)
645
+ new_x[gatherd_idxs] = outs
646
+ gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
647
+ dist.all_to_all(
648
+ list(gathered_tokens.split(input_split_sizes)),
649
+ list(new_x.split(output_splits)),
650
+ )
651
+ outs = gathered_tokens
652
+
653
+ new_x = torch.empty_like(outs)
654
+ new_x[idxs] = outs
655
+ final_out = (
656
+ new_x.view(*topk_ids.shape, -1)
657
+ .type(topk_weight.dtype)
658
+ .mul_(topk_weight.unsqueeze(dim=-1))
659
+ .sum(dim=1)
660
+ .type(new_x.dtype)
661
+ )
662
+ return final_out
663
+
664
+
665
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
666
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
667
+ """
668
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
669
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
670
+ """
671
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
672
+ if n_rep == 1:
673
+ return hidden_states
674
+ hidden_states = hidden_states[:, :, None, :, :].expand(
675
+ batch, num_key_value_heads, n_rep, slen, head_dim
676
+ )
677
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
678
+
679
+
680
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV2
681
+ class DeepseekV2Attention(nn.Module):
682
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
683
+
684
+ def __init__(self, config: DeepseekV2Config, layer_idx: Optional[int] = None):
685
+ super().__init__()
686
+ self.config = config
687
+ self.layer_idx = layer_idx
688
+ if layer_idx is None:
689
+ logger.warning_once(
690
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
691
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
692
+ "when creating this class."
693
+ )
694
+
695
+ self.attention_dropout = config.attention_dropout
696
+ self.hidden_size = config.hidden_size
697
+ self.num_heads = config.num_attention_heads
698
+
699
+ self.max_position_embeddings = config.max_position_embeddings
700
+ self.rope_theta = config.rope_theta
701
+ self.q_lora_rank = config.q_lora_rank
702
+ self.qk_rope_head_dim = config.qk_rope_head_dim
703
+ self.kv_lora_rank = config.kv_lora_rank
704
+ self.v_head_dim = config.v_head_dim
705
+ self.qk_nope_head_dim = config.qk_nope_head_dim
706
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
707
+
708
+ self.is_causal = True
709
+
710
+ if self.q_lora_rank is None:
711
+ self.q_proj = nn.Linear(
712
+ self.hidden_size, self.num_heads * self.q_head_dim, bias=False
713
+ )
714
+ else:
715
+ self.q_a_proj = nn.Linear(
716
+ self.hidden_size, config.q_lora_rank, bias=config.attention_bias
717
+ )
718
+ self.q_a_layernorm = DeepseekV2RMSNorm(config.q_lora_rank)
719
+ self.q_b_proj = nn.Linear(
720
+ config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
721
+ )
722
+
723
+ self.kv_a_proj_with_mqa = nn.Linear(
724
+ self.hidden_size,
725
+ config.kv_lora_rank + config.qk_rope_head_dim,
726
+ bias=config.attention_bias,
727
+ )
728
+ self.kv_a_layernorm = DeepseekV2RMSNorm(config.kv_lora_rank)
729
+ self.kv_b_proj = nn.Linear(
730
+ config.kv_lora_rank,
731
+ self.num_heads
732
+ * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
733
+ bias=False,
734
+ )
735
+
736
+ self.o_proj = nn.Linear(
737
+ self.num_heads * self.v_head_dim,
738
+ self.hidden_size,
739
+ bias=config.attention_bias,
740
+ )
741
+ self._init_rope()
742
+
743
+ self.softmax_scale = self.q_head_dim ** (-0.5)
744
+ if self.config.rope_scaling is not None:
745
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
746
+ scaling_factor = self.config.rope_scaling["factor"]
747
+ if mscale_all_dim:
748
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
749
+ self.softmax_scale = self.softmax_scale * mscale * mscale
750
+
751
+ def _init_rope(self):
752
+ if self.config.rope_scaling is None:
753
+ self.rotary_emb = DeepseekV2RotaryEmbedding(
754
+ self.qk_rope_head_dim,
755
+ max_position_embeddings=self.max_position_embeddings,
756
+ base=self.rope_theta,
757
+ )
758
+ else:
759
+ scaling_type = self.config.rope_scaling["type"]
760
+ scaling_factor = self.config.rope_scaling["factor"]
761
+ if scaling_type == "linear":
762
+ self.rotary_emb = DeepseekV2LinearScalingRotaryEmbedding(
763
+ self.qk_rope_head_dim,
764
+ max_position_embeddings=self.max_position_embeddings,
765
+ scaling_factor=scaling_factor,
766
+ base=self.rope_theta,
767
+ )
768
+ elif scaling_type == "dynamic":
769
+ self.rotary_emb = DeepseekV2DynamicNTKScalingRotaryEmbedding(
770
+ self.qk_rope_head_dim,
771
+ max_position_embeddings=self.max_position_embeddings,
772
+ scaling_factor=scaling_factor,
773
+ base=self.rope_theta,
774
+ )
775
+ elif scaling_type == "yarn":
776
+ kwargs = {
777
+ key: self.config.rope_scaling[key]
778
+ for key in [
779
+ "original_max_position_embeddings",
780
+ "beta_fast",
781
+ "beta_slow",
782
+ "mscale",
783
+ "mscale_all_dim",
784
+ ]
785
+ if key in self.config.rope_scaling
786
+ }
787
+ self.rotary_emb = DeepseekV2YarnRotaryEmbedding(
788
+ self.qk_rope_head_dim,
789
+ max_position_embeddings=self.max_position_embeddings,
790
+ scaling_factor=scaling_factor,
791
+ base=self.rope_theta,
792
+ **kwargs,
793
+ )
794
+ else:
795
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
796
+
797
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
798
+ return (
799
+ tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
800
+ .transpose(1, 2)
801
+ .contiguous()
802
+ )
803
+
804
+ def forward(
805
+ self,
806
+ hidden_states: torch.Tensor,
807
+ attention_mask: Optional[torch.Tensor] = None,
808
+ position_ids: Optional[torch.LongTensor] = None,
809
+ past_key_value: Optional[Cache] = None,
810
+ output_attentions: bool = False,
811
+ use_cache: bool = False,
812
+ **kwargs,
813
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
814
+ if "padding_mask" in kwargs:
815
+ warnings.warn(
816
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
817
+ )
818
+ bsz, q_len, _ = hidden_states.size()
819
+
820
+ if self.q_lora_rank is None:
821
+ q = self.q_proj(hidden_states)
822
+ else:
823
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
824
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
825
+ q_nope, q_pe = torch.split(
826
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
827
+ )
828
+
829
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
830
+ compressed_kv, k_pe = torch.split(
831
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
832
+ )
833
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
834
+ kv = (
835
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
836
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
837
+ .transpose(1, 2)
838
+ )
839
+
840
+ k_nope, value_states = torch.split(
841
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
842
+ )
843
+ kv_seq_len = value_states.shape[-2]
844
+ if past_key_value is not None:
845
+ if self.layer_idx is None:
846
+ raise ValueError(
847
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
848
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
849
+ "with a layer index."
850
+ )
851
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
852
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
853
+
854
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
855
+
856
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
857
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
858
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
859
+
860
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
861
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
862
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
863
+ if past_key_value is not None:
864
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
865
+ key_states, value_states = past_key_value.update(
866
+ key_states, value_states, self.layer_idx, cache_kwargs
867
+ )
868
+
869
+ attn_weights = (
870
+ torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
871
+ )
872
+
873
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
874
+ raise ValueError(
875
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
876
+ f" {attn_weights.size()}"
877
+ )
878
+ assert attention_mask is not None
879
+ if attention_mask is not None:
880
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
881
+ raise ValueError(
882
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
883
+ )
884
+ attn_weights = attn_weights + attention_mask
885
+
886
+ # upcast attention to fp32
887
+ attn_weights = nn.functional.softmax(
888
+ attn_weights, dim=-1, dtype=torch.float32
889
+ ).to(query_states.dtype)
890
+ attn_weights = nn.functional.dropout(
891
+ attn_weights, p=self.attention_dropout, training=self.training
892
+ )
893
+ attn_output = torch.matmul(attn_weights, value_states)
894
+
895
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
896
+ raise ValueError(
897
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
898
+ f" {attn_output.size()}"
899
+ )
900
+
901
+ attn_output = attn_output.transpose(1, 2).contiguous()
902
+
903
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
904
+
905
+ attn_output = self.o_proj(attn_output)
906
+
907
+ if not output_attentions:
908
+ attn_weights = None
909
+
910
+ return attn_output, attn_weights, past_key_value
911
+
912
+
913
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV2
914
+ class DeepseekV2FlashAttention2(DeepseekV2Attention):
915
+ """
916
+ DeepseekV2 flash attention module. This module inherits from `DeepseekV2Attention` as the weights of the module stays
917
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
918
+ flash attention and deal with padding tokens in case the input contains any of them.
919
+ """
920
+
921
+ def __init__(self, *args, **kwargs):
922
+ super().__init__(*args, **kwargs)
923
+
924
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
925
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
926
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
927
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
928
+
929
+ def forward(
930
+ self,
931
+ hidden_states: torch.Tensor,
932
+ attention_mask: Optional[torch.LongTensor] = None,
933
+ position_ids: Optional[torch.LongTensor] = None,
934
+ past_key_value: Optional[Cache] = None,
935
+ output_attentions: bool = False,
936
+ use_cache: bool = False,
937
+ **kwargs,
938
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
939
+ # DeepseekV2FlashAttention2 attention does not support output_attentions
940
+ if "padding_mask" in kwargs:
941
+ warnings.warn(
942
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
943
+ )
944
+
945
+ # overwrite attention_mask with padding_mask
946
+ attention_mask = kwargs.pop("padding_mask")
947
+
948
+ output_attentions = False
949
+
950
+ bsz, q_len, _ = hidden_states.size()
951
+
952
+ if self.q_lora_rank is None:
953
+ q = self.q_proj(hidden_states)
954
+ else:
955
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
956
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
957
+ q_nope, q_pe = torch.split(
958
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
959
+ )
960
+
961
+ # Flash attention requires the input to have the shape
962
+ # batch_size x seq_length x head_dim x hidden_dim
963
+ # therefore we just need to keep the original shape
964
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
965
+ compressed_kv, k_pe = torch.split(
966
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
967
+ )
968
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
969
+ kv = (
970
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
971
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
972
+ .transpose(1, 2)
973
+ )
974
+
975
+ k_nope, value_states = torch.split(
976
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
977
+ )
978
+ kv_seq_len = value_states.shape[-2]
979
+
980
+ kv_seq_len = value_states.shape[-2]
981
+ if past_key_value is not None:
982
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
983
+
984
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
985
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
986
+
987
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
988
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
989
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
990
+
991
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
992
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
993
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
994
+
995
+ if self.q_head_dim != self.v_head_dim:
996
+ value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
997
+
998
+ if past_key_value is not None:
999
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1000
+ key_states, value_states = past_key_value.update(
1001
+ key_states, value_states, self.layer_idx, cache_kwargs
1002
+ )
1003
+
1004
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
1005
+ # to be able to avoid many of these transpose/reshape/view.
1006
+ query_states = query_states.transpose(1, 2)
1007
+ key_states = key_states.transpose(1, 2)
1008
+ value_states = value_states.transpose(1, 2)
1009
+
1010
+ dropout_rate = self.attention_dropout if self.training else 0.0
1011
+
1012
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
1013
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
1014
+ # cast them back in the correct dtype just to be sure everything works as expected.
1015
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
1016
+ # in fp32. (DeepseekV2RMSNorm handles it correctly)
1017
+
1018
+ input_dtype = query_states.dtype
1019
+ if input_dtype == torch.float32:
1020
+ # Handle the case where the model is quantized
1021
+ if hasattr(self.config, "_pre_quantization_dtype"):
1022
+ target_dtype = self.config._pre_quantization_dtype
1023
+ elif torch.is_autocast_enabled():
1024
+ target_dtype = torch.get_autocast_gpu_dtype()
1025
+ else:
1026
+ target_dtype = self.q_proj.weight.dtype if self.q_lora_rank is None else self.q_a_proj.weight.dtype
1027
+
1028
+ logger.warning_once(
1029
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
1030
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
1031
+ f" {target_dtype}."
1032
+ )
1033
+
1034
+ query_states = query_states.to(target_dtype)
1035
+ key_states = key_states.to(target_dtype)
1036
+ value_states = value_states.to(target_dtype)
1037
+
1038
+ attn_output = self._flash_attention_forward(
1039
+ query_states,
1040
+ key_states,
1041
+ value_states,
1042
+ attention_mask,
1043
+ q_len,
1044
+ dropout=dropout_rate,
1045
+ softmax_scale=self.softmax_scale,
1046
+ )
1047
+ if self.q_head_dim != self.v_head_dim:
1048
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
1049
+
1050
+ attn_output = attn_output.reshape(
1051
+ bsz, q_len, self.num_heads * self.v_head_dim
1052
+ ).contiguous()
1053
+ attn_output = self.o_proj(attn_output)
1054
+
1055
+ if not output_attentions:
1056
+ attn_weights = None
1057
+
1058
+ return attn_output, attn_weights, past_key_value
1059
+
1060
+ def _flash_attention_forward(
1061
+ self,
1062
+ query_states,
1063
+ key_states,
1064
+ value_states,
1065
+ attention_mask,
1066
+ query_length,
1067
+ dropout=0.0,
1068
+ softmax_scale=None,
1069
+ ):
1070
+ """
1071
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1072
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1073
+
1074
+ Args:
1075
+ query_states (`torch.Tensor`):
1076
+ Input query states to be passed to Flash Attention API
1077
+ key_states (`torch.Tensor`):
1078
+ Input key states to be passed to Flash Attention API
1079
+ value_states (`torch.Tensor`):
1080
+ Input value states to be passed to Flash Attention API
1081
+ attention_mask (`torch.Tensor`):
1082
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1083
+ position of padding tokens and 1 for the position of non-padding tokens.
1084
+ dropout (`int`, *optional*):
1085
+ Attention dropout
1086
+ softmax_scale (`float`, *optional*):
1087
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1088
+ """
1089
+ if not self._flash_attn_uses_top_left_mask:
1090
+ causal = self.is_causal
1091
+ else:
1092
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV2FlashAttention2 __init__.
1093
+ causal = self.is_causal and query_length != 1
1094
+
1095
+ # Contains at least one padding token in the sequence
1096
+ if attention_mask is not None:
1097
+ batch_size = query_states.shape[0]
1098
+ (
1099
+ query_states,
1100
+ key_states,
1101
+ value_states,
1102
+ indices_q,
1103
+ cu_seq_lens,
1104
+ max_seq_lens,
1105
+ ) = self._upad_input(
1106
+ query_states, key_states, value_states, attention_mask, query_length
1107
+ )
1108
+
1109
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1110
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1111
+
1112
+ attn_output_unpad = flash_attn_varlen_func(
1113
+ query_states,
1114
+ key_states,
1115
+ value_states,
1116
+ cu_seqlens_q=cu_seqlens_q,
1117
+ cu_seqlens_k=cu_seqlens_k,
1118
+ max_seqlen_q=max_seqlen_in_batch_q,
1119
+ max_seqlen_k=max_seqlen_in_batch_k,
1120
+ dropout_p=dropout,
1121
+ softmax_scale=softmax_scale,
1122
+ causal=causal,
1123
+ )
1124
+
1125
+ attn_output = pad_input(
1126
+ attn_output_unpad, indices_q, batch_size, query_length
1127
+ )
1128
+ else:
1129
+ attn_output = flash_attn_func(
1130
+ query_states,
1131
+ key_states,
1132
+ value_states,
1133
+ dropout,
1134
+ softmax_scale=softmax_scale,
1135
+ causal=causal,
1136
+ )
1137
+
1138
+ return attn_output
1139
+
1140
+ def _upad_input(
1141
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
1142
+ ):
1143
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1144
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1145
+
1146
+ key_layer = index_first_axis(
1147
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1148
+ indices_k,
1149
+ )
1150
+ value_layer = index_first_axis(
1151
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1152
+ indices_k,
1153
+ )
1154
+ if query_length == kv_seq_len:
1155
+ query_layer = index_first_axis(
1156
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1157
+ indices_k,
1158
+ )
1159
+ cu_seqlens_q = cu_seqlens_k
1160
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1161
+ indices_q = indices_k
1162
+ elif query_length == 1:
1163
+ max_seqlen_in_batch_q = 1
1164
+ cu_seqlens_q = torch.arange(
1165
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1166
+ ) # There is a memcpy here, that is very bad.
1167
+ indices_q = cu_seqlens_q[:-1]
1168
+ query_layer = query_layer.squeeze(1)
1169
+ else:
1170
+ # The -q_len: slice assumes left padding.
1171
+ attention_mask = attention_mask[:, -query_length:]
1172
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1173
+ query_layer, attention_mask
1174
+ )
1175
+
1176
+ return (
1177
+ query_layer,
1178
+ key_layer,
1179
+ value_layer,
1180
+ indices_q,
1181
+ (cu_seqlens_q, cu_seqlens_k),
1182
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1183
+ )
1184
+
1185
+
1186
+ ATTENTION_CLASSES = {
1187
+ "eager": DeepseekV2Attention,
1188
+ "flash_attention_2": DeepseekV2FlashAttention2,
1189
+ }
1190
+
1191
+
1192
+ class DeepseekV2DecoderLayer(nn.Module):
1193
+ def __init__(self, config: DeepseekV2Config, layer_idx: int):
1194
+ super().__init__()
1195
+ self.hidden_size = config.hidden_size
1196
+
1197
+ self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
1198
+ config=config, layer_idx=layer_idx
1199
+ )
1200
+
1201
+ self.mlp = (
1202
+ DeepseekV2MoE(config)
1203
+ if (
1204
+ config.n_routed_experts is not None
1205
+ and layer_idx >= config.first_k_dense_replace
1206
+ and layer_idx % config.moe_layer_freq == 0
1207
+ )
1208
+ else DeepseekV2MLP(config)
1209
+ )
1210
+ self.input_layernorm = DeepseekV2RMSNorm(
1211
+ config.hidden_size, eps=config.rms_norm_eps
1212
+ )
1213
+ self.post_attention_layernorm = DeepseekV2RMSNorm(
1214
+ config.hidden_size, eps=config.rms_norm_eps
1215
+ )
1216
+
1217
+ def forward(
1218
+ self,
1219
+ hidden_states: torch.Tensor,
1220
+ attention_mask: Optional[torch.Tensor] = None,
1221
+ position_ids: Optional[torch.LongTensor] = None,
1222
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1223
+ output_attentions: Optional[bool] = False,
1224
+ use_cache: Optional[bool] = False,
1225
+ **kwargs,
1226
+ ) -> Tuple[
1227
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1228
+ ]:
1229
+ """
1230
+ Args:
1231
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1232
+ attention_mask (`torch.FloatTensor`, *optional*):
1233
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1234
+ query_sequence_length, key_sequence_length)` if default attention is used.
1235
+ output_attentions (`bool`, *optional*):
1236
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1237
+ returned tensors for more detail.
1238
+ use_cache (`bool`, *optional*):
1239
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1240
+ (see `past_key_values`).
1241
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1242
+ """
1243
+ if "padding_mask" in kwargs:
1244
+ warnings.warn(
1245
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1246
+ )
1247
+ residual = hidden_states
1248
+
1249
+ hidden_states = self.input_layernorm(hidden_states)
1250
+
1251
+ # Self Attention
1252
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1253
+ hidden_states=hidden_states,
1254
+ attention_mask=attention_mask,
1255
+ position_ids=position_ids,
1256
+ past_key_value=past_key_value,
1257
+ output_attentions=output_attentions,
1258
+ use_cache=use_cache,
1259
+ **kwargs,
1260
+ )
1261
+ hidden_states = residual + hidden_states
1262
+
1263
+ # Fully Connected
1264
+ residual = hidden_states
1265
+ hidden_states = self.post_attention_layernorm(hidden_states)
1266
+ hidden_states = self.mlp(hidden_states)
1267
+ hidden_states = residual + hidden_states
1268
+
1269
+ outputs = (hidden_states,)
1270
+
1271
+ if output_attentions:
1272
+ outputs += (self_attn_weights,)
1273
+
1274
+ if use_cache:
1275
+ outputs += (present_key_value,)
1276
+
1277
+ return outputs
1278
+
1279
+
1280
+ DeepseekV2_START_DOCSTRING = r"""
1281
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1282
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1283
+ etc.)
1284
+
1285
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1286
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1287
+ and behavior.
1288
+
1289
+ Parameters:
1290
+ config ([`DeepseekV2Config`]):
1291
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1292
+ load the weights associated with the model, only the configuration. Check out the
1293
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1294
+ """
1295
+
1296
+
1297
+ @add_start_docstrings(
1298
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1299
+ DeepseekV2_START_DOCSTRING,
1300
+ )
1301
+ class DeepseekV2PreTrainedModel(PreTrainedModel):
1302
+ config_class = DeepseekV2Config
1303
+ base_model_prefix = "model"
1304
+ supports_gradient_checkpointing = True
1305
+ _no_split_modules = ["DeepseekV2DecoderLayer"]
1306
+ _skip_keys_device_placement = "past_key_values"
1307
+ _supports_flash_attn_2 = True
1308
+ _supports_cache_class = True
1309
+
1310
+ def _init_weights(self, module):
1311
+ std = self.config.initializer_range
1312
+ if isinstance(module, nn.Linear):
1313
+ module.weight.data.normal_(mean=0.0, std=std)
1314
+ if module.bias is not None:
1315
+ module.bias.data.zero_()
1316
+ elif isinstance(module, nn.Embedding):
1317
+ module.weight.data.normal_(mean=0.0, std=std)
1318
+ if module.padding_idx is not None:
1319
+ module.weight.data[module.padding_idx].zero_()
1320
+
1321
+
1322
+ DeepseekV2_INPUTS_DOCSTRING = r"""
1323
+ Args:
1324
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1325
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1326
+ it.
1327
+
1328
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1329
+ [`PreTrainedTokenizer.__call__`] for details.
1330
+
1331
+ [What are input IDs?](../glossary#input-ids)
1332
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1333
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1334
+
1335
+ - 1 for tokens that are **not masked**,
1336
+ - 0 for tokens that are **masked**.
1337
+
1338
+ [What are attention masks?](../glossary#attention-mask)
1339
+
1340
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1341
+ [`PreTrainedTokenizer.__call__`] for details.
1342
+
1343
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1344
+ `past_key_values`).
1345
+
1346
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1347
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1348
+ information on the default strategy.
1349
+
1350
+ - 1 indicates the head is **not masked**,
1351
+ - 0 indicates the head is **masked**.
1352
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1353
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1354
+ config.n_positions - 1]`.
1355
+
1356
+ [What are position IDs?](../glossary#position-ids)
1357
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1358
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1359
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1360
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1361
+
1362
+ Two formats are allowed:
1363
+ - a [`~cache_utils.Cache`] instance;
1364
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1365
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1366
+ cache format.
1367
+
1368
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1369
+ legacy cache format will be returned.
1370
+
1371
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1372
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1373
+ of shape `(batch_size, sequence_length)`.
1374
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1375
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1376
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1377
+ model's internal embedding lookup matrix.
1378
+ use_cache (`bool`, *optional*):
1379
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1380
+ `past_key_values`).
1381
+ output_attentions (`bool`, *optional*):
1382
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1383
+ tensors for more detail.
1384
+ output_hidden_states (`bool`, *optional*):
1385
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1386
+ more detail.
1387
+ return_dict (`bool`, *optional*):
1388
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1389
+ """
1390
+
1391
+
1392
+ @add_start_docstrings(
1393
+ "The bare DeepseekV2 Model outputting raw hidden-states without any specific head on top.",
1394
+ DeepseekV2_START_DOCSTRING,
1395
+ )
1396
+ class DeepseekV2Model(DeepseekV2PreTrainedModel):
1397
+ """
1398
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV2DecoderLayer`]
1399
+
1400
+ Args:
1401
+ config: DeepseekV2Config
1402
+ """
1403
+
1404
+ def __init__(self, config: DeepseekV2Config):
1405
+ super().__init__(config)
1406
+ self.padding_idx = config.pad_token_id
1407
+ self.vocab_size = config.vocab_size
1408
+
1409
+ self.embed_tokens = nn.Embedding(
1410
+ config.vocab_size, config.hidden_size, self.padding_idx
1411
+ )
1412
+ self.layers = nn.ModuleList(
1413
+ [
1414
+ DeepseekV2DecoderLayer(config, layer_idx)
1415
+ for layer_idx in range(config.num_hidden_layers)
1416
+ ]
1417
+ )
1418
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1419
+ self.norm = DeepseekV2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1420
+
1421
+ self.gradient_checkpointing = False
1422
+ # Initialize weights and apply final processing
1423
+ self.post_init()
1424
+
1425
+ def get_input_embeddings(self):
1426
+ return self.embed_tokens
1427
+
1428
+ def set_input_embeddings(self, value):
1429
+ self.embed_tokens = value
1430
+
1431
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1432
+ def forward(
1433
+ self,
1434
+ input_ids: torch.LongTensor = None,
1435
+ attention_mask: Optional[torch.Tensor] = None,
1436
+ position_ids: Optional[torch.LongTensor] = None,
1437
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1438
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1439
+ use_cache: Optional[bool] = None,
1440
+ output_attentions: Optional[bool] = None,
1441
+ output_hidden_states: Optional[bool] = None,
1442
+ return_dict: Optional[bool] = None,
1443
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1444
+ output_attentions = (
1445
+ output_attentions
1446
+ if output_attentions is not None
1447
+ else self.config.output_attentions
1448
+ )
1449
+ output_hidden_states = (
1450
+ output_hidden_states
1451
+ if output_hidden_states is not None
1452
+ else self.config.output_hidden_states
1453
+ )
1454
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1455
+
1456
+ return_dict = (
1457
+ return_dict if return_dict is not None else self.config.use_return_dict
1458
+ )
1459
+
1460
+ # retrieve input_ids and inputs_embeds
1461
+ if input_ids is not None and inputs_embeds is not None:
1462
+ raise ValueError(
1463
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1464
+ )
1465
+ elif input_ids is not None:
1466
+ batch_size, seq_length = input_ids.shape[:2]
1467
+ elif inputs_embeds is not None:
1468
+ batch_size, seq_length = inputs_embeds.shape[:2]
1469
+ else:
1470
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1471
+
1472
+ if self.gradient_checkpointing and self.training:
1473
+ if use_cache:
1474
+ logger.warning_once(
1475
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1476
+ )
1477
+ use_cache = False
1478
+
1479
+ past_key_values_length = 0
1480
+ if use_cache:
1481
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1482
+ if use_legacy_cache:
1483
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1484
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1485
+
1486
+ if position_ids is None:
1487
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1488
+ position_ids = torch.arange(
1489
+ past_key_values_length,
1490
+ seq_length + past_key_values_length,
1491
+ dtype=torch.long,
1492
+ device=device,
1493
+ )
1494
+ position_ids = position_ids.unsqueeze(0)
1495
+
1496
+ if inputs_embeds is None:
1497
+ inputs_embeds = self.embed_tokens(input_ids)
1498
+
1499
+ if self._use_flash_attention_2:
1500
+ # 2d mask is passed through the layers
1501
+ attention_mask = (
1502
+ attention_mask
1503
+ if (attention_mask is not None and 0 in attention_mask)
1504
+ else None
1505
+ )
1506
+ else:
1507
+ # 4d mask is passed through the layers
1508
+ attention_mask = _prepare_4d_causal_attention_mask(
1509
+ attention_mask,
1510
+ (batch_size, seq_length),
1511
+ inputs_embeds,
1512
+ past_key_values_length,
1513
+ )
1514
+
1515
+ # embed positions
1516
+ hidden_states = inputs_embeds
1517
+
1518
+ # decoder layers
1519
+ all_hidden_states = () if output_hidden_states else None
1520
+ all_self_attns = () if output_attentions else None
1521
+ next_decoder_cache = None
1522
+
1523
+ for decoder_layer in self.layers:
1524
+ if output_hidden_states:
1525
+ all_hidden_states += (hidden_states,)
1526
+
1527
+ if self.gradient_checkpointing and self.training:
1528
+ layer_outputs = self._gradient_checkpointing_func(
1529
+ decoder_layer.__call__,
1530
+ hidden_states,
1531
+ attention_mask,
1532
+ position_ids,
1533
+ past_key_values,
1534
+ output_attentions,
1535
+ use_cache,
1536
+ )
1537
+ else:
1538
+ layer_outputs = decoder_layer(
1539
+ hidden_states,
1540
+ attention_mask=attention_mask,
1541
+ position_ids=position_ids,
1542
+ past_key_value=past_key_values,
1543
+ output_attentions=output_attentions,
1544
+ use_cache=use_cache,
1545
+ )
1546
+
1547
+ hidden_states = layer_outputs[0]
1548
+
1549
+ if use_cache:
1550
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1551
+
1552
+ if output_attentions:
1553
+ all_self_attns += (layer_outputs[1],)
1554
+
1555
+ hidden_states = self.norm(hidden_states)
1556
+
1557
+ # add hidden states from the last decoder layer
1558
+ if output_hidden_states:
1559
+ all_hidden_states += (hidden_states,)
1560
+
1561
+ next_cache = None
1562
+ if use_cache:
1563
+ next_cache = (
1564
+ next_decoder_cache.to_legacy_cache()
1565
+ if use_legacy_cache
1566
+ else next_decoder_cache
1567
+ )
1568
+ if not return_dict:
1569
+ return tuple(
1570
+ v
1571
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1572
+ if v is not None
1573
+ )
1574
+ return BaseModelOutputWithPast(
1575
+ last_hidden_state=hidden_states,
1576
+ past_key_values=next_cache,
1577
+ hidden_states=all_hidden_states,
1578
+ attentions=all_self_attns,
1579
+ )
1580
+
1581
+
1582
+ class DeepseekV2ForCausalLM(DeepseekV2PreTrainedModel):
1583
+ _tied_weights_keys = ["lm_head.weight"]
1584
+
1585
+ def __init__(self, config):
1586
+ super().__init__(config)
1587
+ self.model = DeepseekV2Model(config)
1588
+ self.vocab_size = config.vocab_size
1589
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1590
+
1591
+ # Initialize weights and apply final processing
1592
+ self.post_init()
1593
+
1594
+ def get_input_embeddings(self):
1595
+ return self.model.embed_tokens
1596
+
1597
+ def set_input_embeddings(self, value):
1598
+ self.model.embed_tokens = value
1599
+
1600
+ def get_output_embeddings(self):
1601
+ return self.lm_head
1602
+
1603
+ def set_output_embeddings(self, new_embeddings):
1604
+ self.lm_head = new_embeddings
1605
+
1606
+ def set_decoder(self, decoder):
1607
+ self.model = decoder
1608
+
1609
+ def get_decoder(self):
1610
+ return self.model
1611
+
1612
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1613
+ @replace_return_docstrings(
1614
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1615
+ )
1616
+ def forward(
1617
+ self,
1618
+ input_ids: torch.LongTensor = None,
1619
+ attention_mask: Optional[torch.Tensor] = None,
1620
+ position_ids: Optional[torch.LongTensor] = None,
1621
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1622
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1623
+ labels: Optional[torch.LongTensor] = None,
1624
+ use_cache: Optional[bool] = None,
1625
+ output_attentions: Optional[bool] = None,
1626
+ output_hidden_states: Optional[bool] = None,
1627
+ return_dict: Optional[bool] = None,
1628
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1629
+ r"""
1630
+ Args:
1631
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1632
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1633
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1634
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1635
+
1636
+ Returns:
1637
+
1638
+ Example:
1639
+
1640
+ ```python
1641
+ >>> from transformers import AutoTokenizer, DeepseekV2ForCausalLM
1642
+
1643
+ >>> model = DeepseekV2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1644
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1645
+
1646
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1647
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1648
+
1649
+ >>> # Generate
1650
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1651
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1652
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1653
+ ```"""
1654
+ output_attentions = (
1655
+ output_attentions
1656
+ if output_attentions is not None
1657
+ else self.config.output_attentions
1658
+ )
1659
+ output_hidden_states = (
1660
+ output_hidden_states
1661
+ if output_hidden_states is not None
1662
+ else self.config.output_hidden_states
1663
+ )
1664
+ return_dict = (
1665
+ return_dict if return_dict is not None else self.config.use_return_dict
1666
+ )
1667
+
1668
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1669
+ outputs = self.model(
1670
+ input_ids=input_ids,
1671
+ attention_mask=attention_mask,
1672
+ position_ids=position_ids,
1673
+ past_key_values=past_key_values,
1674
+ inputs_embeds=inputs_embeds,
1675
+ use_cache=use_cache,
1676
+ output_attentions=output_attentions,
1677
+ output_hidden_states=output_hidden_states,
1678
+ return_dict=return_dict,
1679
+ )
1680
+
1681
+ hidden_states = outputs[0]
1682
+ logits = self.lm_head(hidden_states)
1683
+ logits = logits.float()
1684
+
1685
+ loss = None
1686
+ if labels is not None:
1687
+ # Shift so that tokens < n predict n
1688
+ shift_logits = logits[..., :-1, :].contiguous()
1689
+ shift_labels = labels[..., 1:].contiguous()
1690
+ # Flatten the tokens
1691
+ loss_fct = CrossEntropyLoss()
1692
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1693
+ shift_labels = shift_labels.view(-1)
1694
+ # Enable model parallelism
1695
+ shift_labels = shift_labels.to(shift_logits.device)
1696
+ loss = loss_fct(shift_logits, shift_labels)
1697
+
1698
+ if not return_dict:
1699
+ output = (logits,) + outputs[1:]
1700
+ return (loss,) + output if loss is not None else output
1701
+
1702
+ return CausalLMOutputWithPast(
1703
+ loss=loss,
1704
+ logits=logits,
1705
+ past_key_values=outputs.past_key_values,
1706
+ hidden_states=outputs.hidden_states,
1707
+ attentions=outputs.attentions,
1708
+ )
1709
+
1710
+ def prepare_inputs_for_generation(
1711
+ self,
1712
+ input_ids,
1713
+ past_key_values=None,
1714
+ attention_mask=None,
1715
+ inputs_embeds=None,
1716
+ **kwargs,
1717
+ ):
1718
+ if past_key_values is not None:
1719
+ if isinstance(past_key_values, Cache):
1720
+ cache_length = past_key_values.get_seq_length()
1721
+ past_length = past_key_values.seen_tokens
1722
+ max_cache_length = past_key_values.get_max_length()
1723
+ else:
1724
+ cache_length = past_length = past_key_values[0][0].shape[2]
1725
+ max_cache_length = None
1726
+
1727
+ # Keep only the unprocessed tokens:
1728
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1729
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1730
+ # input)
1731
+ if (
1732
+ attention_mask is not None
1733
+ and attention_mask.shape[1] > input_ids.shape[1]
1734
+ ):
1735
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1736
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1737
+ # input_ids based on the past_length.
1738
+ elif past_length < input_ids.shape[1]:
1739
+ input_ids = input_ids[:, past_length:]
1740
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1741
+
1742
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1743
+ if (
1744
+ max_cache_length is not None
1745
+ and attention_mask is not None
1746
+ and cache_length + input_ids.shape[1] > max_cache_length
1747
+ ):
1748
+ attention_mask = attention_mask[:, -max_cache_length:]
1749
+
1750
+ position_ids = kwargs.get("position_ids", None)
1751
+ if attention_mask is not None and position_ids is None:
1752
+ # create position_ids on the fly for batch generation
1753
+ position_ids = attention_mask.long().cumsum(-1) - 1
1754
+ position_ids.masked_fill_(attention_mask == 0, 1)
1755
+ if past_key_values:
1756
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1757
+
1758
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1759
+ if inputs_embeds is not None and past_key_values is None:
1760
+ model_inputs = {"inputs_embeds": inputs_embeds}
1761
+ else:
1762
+ model_inputs = {"input_ids": input_ids}
1763
+
1764
+ model_inputs.update(
1765
+ {
1766
+ "position_ids": position_ids,
1767
+ "past_key_values": past_key_values,
1768
+ "use_cache": kwargs.get("use_cache"),
1769
+ "attention_mask": attention_mask,
1770
+ }
1771
+ )
1772
+ return model_inputs
1773
+
1774
+ @staticmethod
1775
+ def _reorder_cache(past_key_values, beam_idx):
1776
+ reordered_past = ()
1777
+ for layer_past in past_key_values:
1778
+ reordered_past += (
1779
+ tuple(
1780
+ past_state.index_select(0, beam_idx.to(past_state.device))
1781
+ for past_state in layer_past
1782
+ ),
1783
+ )
1784
+ return reordered_past
1785
+
1786
+
1787
+ @add_start_docstrings(
1788
+ """
1789
+ The DeepseekV2 Model transformer with a sequence classification head on top (linear layer).
1790
+
1791
+ [`DeepseekV2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1792
+ (e.g. GPT-2) do.
1793
+
1794
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1795
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1796
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1797
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1798
+ each row of the batch).
1799
+ """,
1800
+ DeepseekV2_START_DOCSTRING,
1801
+ )
1802
+ class DeepseekV2ForSequenceClassification(DeepseekV2PreTrainedModel):
1803
+ def __init__(self, config):
1804
+ super().__init__(config)
1805
+ self.num_labels = config.num_labels
1806
+ self.model = DeepseekV2Model(config)
1807
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1808
+
1809
+ # Initialize weights and apply final processing
1810
+ self.post_init()
1811
+
1812
+ def get_input_embeddings(self):
1813
+ return self.model.embed_tokens
1814
+
1815
+ def set_input_embeddings(self, value):
1816
+ self.model.embed_tokens = value
1817
+
1818
+ @add_start_docstrings_to_model_forward(DeepseekV2_INPUTS_DOCSTRING)
1819
+ def forward(
1820
+ self,
1821
+ input_ids: torch.LongTensor = None,
1822
+ attention_mask: Optional[torch.Tensor] = None,
1823
+ position_ids: Optional[torch.LongTensor] = None,
1824
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1825
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1826
+ labels: Optional[torch.LongTensor] = None,
1827
+ use_cache: Optional[bool] = None,
1828
+ output_attentions: Optional[bool] = None,
1829
+ output_hidden_states: Optional[bool] = None,
1830
+ return_dict: Optional[bool] = None,
1831
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1832
+ r"""
1833
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1834
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1835
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1836
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1837
+ """
1838
+ return_dict = (
1839
+ return_dict if return_dict is not None else self.config.use_return_dict
1840
+ )
1841
+
1842
+ transformer_outputs = self.model(
1843
+ input_ids,
1844
+ attention_mask=attention_mask,
1845
+ position_ids=position_ids,
1846
+ past_key_values=past_key_values,
1847
+ inputs_embeds=inputs_embeds,
1848
+ use_cache=use_cache,
1849
+ output_attentions=output_attentions,
1850
+ output_hidden_states=output_hidden_states,
1851
+ return_dict=return_dict,
1852
+ )
1853
+ hidden_states = transformer_outputs[0]
1854
+ logits = self.score(hidden_states)
1855
+
1856
+ if input_ids is not None:
1857
+ batch_size = input_ids.shape[0]
1858
+ else:
1859
+ batch_size = inputs_embeds.shape[0]
1860
+
1861
+ if self.config.pad_token_id is None and batch_size != 1:
1862
+ raise ValueError(
1863
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1864
+ )
1865
+ if self.config.pad_token_id is None:
1866
+ sequence_lengths = -1
1867
+ else:
1868
+ if input_ids is not None:
1869
+ sequence_lengths = (
1870
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1871
+ ).to(logits.device)
1872
+ else:
1873
+ sequence_lengths = -1
1874
+
1875
+ pooled_logits = logits[
1876
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1877
+ ]
1878
+
1879
+ loss = None
1880
+ if labels is not None:
1881
+ labels = labels.to(logits.device)
1882
+ if self.config.problem_type is None:
1883
+ if self.num_labels == 1:
1884
+ self.config.problem_type = "regression"
1885
+ elif self.num_labels > 1 and (
1886
+ labels.dtype == torch.long or labels.dtype == torch.int
1887
+ ):
1888
+ self.config.problem_type = "single_label_classification"
1889
+ else:
1890
+ self.config.problem_type = "multi_label_classification"
1891
+
1892
+ if self.config.problem_type == "regression":
1893
+ loss_fct = MSELoss()
1894
+ if self.num_labels == 1:
1895
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1896
+ else:
1897
+ loss = loss_fct(pooled_logits, labels)
1898
+ elif self.config.problem_type == "single_label_classification":
1899
+ loss_fct = CrossEntropyLoss()
1900
+ loss = loss_fct(
1901
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1902
+ )
1903
+ elif self.config.problem_type == "multi_label_classification":
1904
+ loss_fct = BCEWithLogitsLoss()
1905
+ loss = loss_fct(pooled_logits, labels)
1906
+ if not return_dict:
1907
+ output = (pooled_logits,) + transformer_outputs[1:]
1908
+ return ((loss,) + output) if loss is not None else output
1909
+
1910
+ return SequenceClassifierOutputWithPast(
1911
+ loss=loss,
1912
+ logits=pooled_logits,
1913
+ past_key_values=transformer_outputs.past_key_values,
1914
+ hidden_states=transformer_outputs.hidden_states,
1915
+ attentions=transformer_outputs.attentions,
1916
+ )
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin▁of▁sentence|>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end▁of▁sentence|>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|end▁of▁sentence|>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "100000": {
7
+ "content": "<|begin▁of▁sentence|>",
8
+ "lstrip": false,
9
+ "normalized": true,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "100001": {
15
+ "content": "<|end▁of▁sentence|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ }
22
+ },
23
+ "bos_token": "<|begin▁of▁sentence|>",
24
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message['role'] == 'user' %}{{ 'User: ' + message['content'] + '\n\n' }}{% elif message['role'] == 'assistant' %}{{ 'Assistant: ' + message['content'] + eos_token }}{% elif message['role'] == 'system' %}{{ message['content'] + '\n\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}",
25
+ "clean_up_tokenization_spaces": false,
26
+ "eos_token": "<|end▁of▁sentence|>",
27
+ "legacy": true,
28
+ "model_max_length": 16384,
29
+ "pad_token": "<|end▁of▁sentence|>",
30
+ "sp_model_kwargs": {},
31
+ "tokenizer_class": "LlamaTokenizer",
32
+ "unk_token": null,
33
+ "use_default_system_prompt": false
34
+ }