File size: 2,122 Bytes
7286c22 2207283 7286c22 2207283 7286c22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: BART-finetuned-BBC
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# BART-finetuned-BBC
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3634
- Rouge1: 0.2438
- Rouge2: 0.201
- Rougel: 0.232
- Rougelsum: 0.2319
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 1.7832 | 1.0 | 157 | 0.4721 | 0.229 | 0.18 | 0.2151 | 0.2149 |
| 0.4617 | 2.0 | 314 | 0.4217 | 0.2426 | 0.1997 | 0.2312 | 0.2313 |
| 0.3798 | 3.0 | 471 | 0.3847 | 0.2435 | 0.2004 | 0.2312 | 0.2314 |
| 0.3252 | 4.0 | 628 | 0.3781 | 0.2499 | 0.2078 | 0.2385 | 0.2384 |
| 0.2857 | 5.0 | 785 | 0.3631 | 0.2418 | 0.1994 | 0.2314 | 0.2313 |
| 0.2616 | 6.0 | 942 | 0.3563 | 0.2448 | 0.201 | 0.2329 | 0.2331 |
| 0.2348 | 7.0 | 1099 | 0.3623 | 0.243 | 0.1984 | 0.2313 | 0.2311 |
| 0.2183 | 8.0 | 1256 | 0.3634 | 0.2438 | 0.201 | 0.232 | 0.2319 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|