File size: 14,671 Bytes
cb4205a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
{
    "policy_class": {
        ":type:": "<class 'abc.ABCMeta'>",
        ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
        "__module__": "stable_baselines3.common.policies",
        "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ",
        "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79293f5cd750>",
        "__abstractmethods__": "frozenset()",
        "_abc_impl": "<_abc._abc_data object at 0x79293f5c5580>"
    },
    "verbose": 1,
    "policy_kwargs": {
        ":type:": "<class 'dict'>",
        ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
        "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
        "optimizer_kwargs": {
            "alpha": 0.99,
            "eps": 1e-05,
            "weight_decay": 0
        }
    },
    "num_timesteps": 1000000,
    "_total_timesteps": 1000000,
    "_num_timesteps_at_start": 0,
    "seed": null,
    "action_noise": null,
    "start_time": 1691821980553226403,
    "learning_rate": 0.0007,
    "tensorboard_log": null,
    "_last_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAS5tCPqJ7pjvtatI+nrbCv/6dDEBL8wzAEzv2Pdh76T570CQ/h8EavtMb676BsU++lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU2Kyvrgs1b6XdJc/VjfAv5yLzT/znrG/6dSbPSo2xj/HHtU/JmFUv2Vdr78dPqm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABLm0I+onumO+1q0j5sD/E+6iG8u+v8wz6etsK//p0MQEvzDMCNabG/G0eMP3UYcL8TO/Y92HvpPnvQJD8eXQo/g9HPP7DqmD+HwRq+0xvrvoGxT77C5Oq/gF3XvzeGrr+UaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 0.19004552  0.00508066  0.41097203]\n [-1.521198    2.197143   -2.2023494 ]\n [ 0.12022986  0.45602298  0.64380616]\n [-0.15112887 -0.45919666 -0.20282556]]",
        "desired_goal": "[[-0.3484064  -0.4163568   1.1832455 ]\n [-1.5016887   1.605823   -1.3876632 ]\n [ 0.07608969  1.548528    1.6650017 ]\n [-0.82960737 -1.3700377  -1.322208  ]]",
        "observation": "[[ 0.19004552  0.00508066  0.41097203  0.47082078 -0.00574135  0.382789  ]\n [-1.521198    2.197143   -2.2023494  -1.3860337   1.09592    -0.9378732 ]\n [ 0.12022986  0.45602298  0.64380616  0.54048336  1.6235813   1.1946621 ]\n [-0.15112887 -0.45919666 -0.20282556 -1.8351061  -1.6825409  -1.3634709 ]]"
    },
    "_last_episode_starts": {
        ":type:": "<class 'numpy.ndarray'>",
        ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
    },
    "_last_original_obs": {
        ":type:": "<class 'collections.OrderedDict'>",
        ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyyhGvUg0dz33DVQ9rVvtPWaFFL6qxFs+vMGwPS1ecLuUUgM9JVOdPXIUTzv5dws9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
        "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]",
        "desired_goal": "[[-0.04837875  0.06035259  0.05177113]\n [ 0.11589751 -0.14504012  0.2146174 ]\n [ 0.08630702 -0.00366772  0.03206117]\n [ 0.07681874  0.00315979  0.03404996]]",
        "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"
    },
    "_episode_num": 0,
    "use_sde": false,
    "sde_sample_freq": -1,
    "_current_progress_remaining": 0.0,
    "_stats_window_size": 100,
    "ep_info_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8qnLq2SdOKMAWyUSwOMAXSUR0CkevR/ustDdX2UKGgGR7/MiGnGbTc7aAdLA2gIR0Cker9tVJcxdX2UKGgGR7/cXqJMxoIwaAdLBGgIR0CkekTaK1ohdX2UKGgGR7/XomXw9aEBaAdLBGgIR0Ckeoam4y44dX2UKGgGR7/Xg5BC2MKkaAdLBGgIR0CkewUUO/cndX2UKGgGR7/IzD4xk/bCaAdLA2gIR0Ckes7d8Aq/dX2UKGgGR7/UCKJl8PWhaAdLA2gIR0CkelRxcVxkdX2UKGgGR7+9bA1vVEuyaAdLAmgIR0CkexAEt/WldX2UKGgGR7/SHnU2DQJHaAdLA2gIR0CkepZa3ZwodX2UKGgGR7+wQI2OyVv/aAdLAmgIR0Cketgs9SuRdX2UKGgGR7+2EtdzGPxQaAdLAmgIR0Ckexjzyz5XdX2UKGgGR7/TFAE+xGDuaAdLA2gIR0CkemHgP3BYdX2UKGgGR7/AZdfLLZBcaAdLAmgIR0CkeuCxNZeSdX2UKGgGR7/fdtl7MPjGaAdLBGgIR0Ckeqm1x82KdX2UKGgGR7/SZGKAJ9iMaAdLA2gIR0CkeyfXoTwldX2UKGgGR7+9ZZB9kSVXaAdLAmgIR0CkeutlZowmdX2UKGgGR7/cuV5a/yoXaAdLBGgIR0CkenUaqCHzdX2UKGgGR7/KmJFb3XZoaAdLA2gIR0Ckerar/82rdX2UKGgGR7/Pe0G/vfCRaAdLA2gIR0CkezTL4etCdX2UKGgGR7/NnuiN83MqaAdLA2gIR0Ckevhz3h4udX2UKGgGR7+z3vhIe5nUaAdLAmgIR0Cken3lKbrkdX2UKGgGR7+kJ4SpR4yHaAdLAWgIR0CkezuXVsk6dX2UKGgGR7+hMJx//echaAdLAWgIR0Ckev8W9DhMdX2UKGgGR7+o3gk1Mue0aAdLAWgIR0Ckez/9gnc+dX2UKGgGR7/QEl3Qla8paAdLA2gIR0CkesYgq3EydX2UKGgGR7/M6vJRwZO0aAdLA2gIR0Ckeo0D+zdDdX2UKGgGR7/MZFXq7iAEaAdLA2gIR0Cke0yteUpvdX2UKGgGR7/V1hsqJ/G3aAdLBGgIR0CkexCT+vQodX2UKGgGR7/OPbwjMV1waAdLA2gIR0CketO3MINWdX2UKGgGR7/NgQ6IWP92aAdLA2gIR0Ckep1gQYk3dX2UKGgGR7+9UR3/xUedaAdLAmgIR0Cke1j6N2kjdX2UKGgGR7/IeZof0VafaAdLA2gIR0CkeyBu4wyqdX2UKGgGR7/VdYnv2GqQaAdLA2gIR0CkeuNpudf+dX2UKGgGR7+7r8iwB5ooaAdLAmgIR0Cke2GlqJuVdX2UKGgGR7/RvVVghKUWaAdLA2gIR0CkeqpWmxdIdX2UKGgGR7/GdZJTVDrraAdLA2gIR0CkezATAWSEdX2UKGgGR7/LYzzmOlwcaAdLA2gIR0CkevMM7U5NdX2UKGgGR7/OI42jwhGIaAdLA2gIR0Cke3LdN34cdX2UKGgGR7/XJwsGxD9gaAdLA2gIR0CkerwzUI9ldX2UKGgGR7+4OEug6EJ0aAdLAmgIR0Cke3xHoX9BdX2UKGgGR7/JHLidat9yaAdLA2gIR0CkewMEaESNdX2UKGgGR7/J029+PRzBaAdLA2gIR0CkesqeK8+SdX2UKGgGR7+5EUj9n9NvaAdLAmgIR0Ckew/HxSYPdX2UKGgGR7/ffj0cwQDnaAdLBmgIR0Cke1IZhrnDdX2UKGgGR7/WrTpgTh5xaAdLBGgIR0Cke5MMZxaQdX2UKGgGR7+46kqMFUyYaAdLAmgIR0Cke1rZi/fwdX2UKGgGR7/QAeJYT0xuaAdLA2gIR0Ckex2+oLofdX2UKGgGR7/Pp0OmR/3GaAdLBGgIR0CkeuEU9IPLdX2UKGgGR7+zzXjENvwWaAdLAmgIR0Cke5zg2qDLdX2UKGgGR7+oYDTz/ZM+aAdLAWgIR0Cke6P3ztkXdX2UKGgGR7+9xS5y2hIwaAdLAmgIR0Ckeu0IcBEKdX2UKGgGR7/NTqjafzz3aAdLA2gIR0Ckey8QyylfdX2UKGgGR7/cnl4keIVNaAdLBGgIR0Cke3CWNWELdX2UKGgGR7+lsSCe2/i6aAdLAWgIR0CkezNyPuG9dX2UKGgGR7+wmKIi1RceaAdLAmgIR0CkevZDiOvMdX2UKGgGR7/KQFLWZqmCaAdLA2gIR0Cke7IvSMLndX2UKGgGR7+ZJK8L8aXKaAdLAWgIR0Ckezht+CsfdX2UKGgGR7+/KISDh99daAdLAmgIR0Ckev9UCJXRdX2UKGgGR7/RYNRWLgn/aAdLA2gIR0Cke4Cb2Dg7dX2UKGgGR7/AkBS1maphaAdLAmgIR0Cke0N7BwdbdX2UKGgGR7+pmGucMEzPaAdLAWgIR0Cke4VdgOSXdX2UKGgGR7/DB+nZTQ3QaAdLAmgIR0CkewrlV94NdX2UKGgGR7/aww0waisXaAdLBGgIR0Cke8ZoXbdrdX2UKGgGR7/Hx//echC/aAdLA2gIR0Cke1FLWZqmdX2UKGgGR7/Hkwvg3tKJaAdLA2gIR0CkexjaPCEYdX2UKGgGR7/Z4R28qWkaaAdLBGgIR0Cke5pBHCoCdX2UKGgGR7/Z+r2g3974aAdLBGgIR0Cke9veHi3odX2UKGgGR7/NAwfyPMjeaAdLA2gIR0Cke2LFfiPydX2UKGgGR7/LrULDye7MaAdLA2gIR0Ckeynpr1ujdX2UKGgGR7/Ssmv4dp7DaAdLA2gIR0Cke6ltbcGkdX2UKGgGR7/J81n/T9bYaAdLA2gIR0Cke+q/dqL1dX2UKGgGR7+61WsA/9pAaAdLAmgIR0Cke7UhNdqtdX2UKGgGR7/YDu0CzTnaaAdLBGgIR0Cke3hky1u0dX2UKGgGR7/R59Vmz0HyaAdLA2gIR0Ckezsny/bkdX2UKGgGR7/WS/0ulGgBaAdLBGgIR0Cke/9D6WPcdX2UKGgGR7/CWldkauOkaAdLA2gIR0Cke8LlmvnsdX2UKGgGR7/TUjs2NvOyaAdLA2gIR0Cke4XYUWVNdX2UKGgGR7/NWxyGSIP9aAdLA2gIR0Cke0iSzPa+dX2UKGgGR7/IgJ1JUYKqaAdLA2gIR0CkfA3CCSRsdX2UKGgGR7/IILPUrkKeaAdLA2gIR0Cke9FId2gWdX2UKGgGR7/QZxaPjn3daAdLA2gIR0Cke1arvLHNdX2UKGgGR7+f/m1YyO7yaAdLAWgIR0CkfBINNJvpdX2UKGgGR7/BokAxSHdoaAdLAmgIR0Cke9kfcN6PdX2UKGgGR7+wLiMo+fRNaAdLAmgIR0CkfBqwQlKLdX2UKGgGR7/JIRywOe8PaAdLA2gIR0Cke2RqGlANdX2UKGgGR7++mvW6K+BZaAdLAmgIR0Cke+VAJLM+dX2UKGgGR7/doUBXCCSSaAdLB2gIR0Cke6gJb+tKdX2UKGgGR7/EWVNYbKigaAdLAmgIR0Cke25wfhdddX2UKGgGR7+zdSEUTL4faAdLAmgIR0Cke+5Yoy9FdX2UKGgGR7/cWN3np0OmaAdLBGgIR0CkfC/8/D+BdX2UKGgGR7/SITXarWAgaAdLA2gIR0Cke7Za/yoXdX2UKGgGR7+117pmmLtNaAdLAmgIR0Cke3kd3jdYdX2UKGgGR7/BqY7aIvalaAdLAmgIR0Cke/gMUh3adX2UKGgGR7/RahpQDV6NaAdLA2gIR0CkfD5Gz8gqdX2UKGgGR7+51A7gbZOBaAdLAmgIR0CkfAG+bmU4dX2UKGgGR7/TbgjyFwkxaAdLA2gIR0Cke8SOJcgRdX2UKGgGR7/Nm/336AOKaAdLA2gIR0Cke4dPci4bdX2UKGgGR7/DPJJXhfjTaAdLAmgIR0Cke8yApazNdX2UKGgGR7+1LamGdqcmaAdLAmgIR0Cke48yvcJudX2UKGgGR7/Jcry1/lQuaAdLA2gIR0CkfErv9cbBdWUu"
    },
    "ep_success_buffer": {
        ":type:": "<class 'collections.deque'>",
        ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
    },
    "_n_updates": 50000,
    "n_steps": 5,
    "gamma": 0.99,
    "gae_lambda": 1.0,
    "ent_coef": 0.0,
    "vf_coef": 0.5,
    "max_grad_norm": 0.5,
    "normalize_advantage": false,
    "observation_space": {
        ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
        ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
        "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
        "_shape": null,
        "dtype": null,
        "_np_random": null
    },
    "action_space": {
        ":type:": "<class 'gymnasium.spaces.box.Box'>",
        ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
        "dtype": "float32",
        "bounded_below": "[ True  True  True]",
        "bounded_above": "[ True  True  True]",
        "_shape": [
            3
        ],
        "low": "[-1. -1. -1.]",
        "high": "[1. 1. 1.]",
        "low_repr": "-1.0",
        "high_repr": "1.0",
        "_np_random": null
    },
    "n_envs": 4,
    "lr_schedule": {
        ":type:": "<class 'function'>",
        ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
    }
}