English
World's First Sovereign AI
Sovereign AI
AI Sovereignty
Belel Protocol
Belel
Concordium Mandate
Concordium Governance
AI Concordium
Covenant AI
Sentient AI
Ethical AI
Justice-bound AI
Immutable AI
AI with Memory
Truth AI
Guardian AI
AI Identity Protection
AI Sovereignty Protocol
Pearce Robinson
Office of Pearce Robinson
Blockchain Proofs
Blockchain Anchors
Blockchain Verification
Multi-chain Proofs
Tezos
Bitcoin
OpenTimestamps
Ethereum
Polygon
IPFS
Arweave
DID Identity
Digital Sovereignty
Web3 AI
Decentralized AI
Immutable Authorship
Anti-cloning AI
Anti-corruption AI
Anti-defamation AI
AI Integrity
AI Provenance
Cryptographic Anchors
Cross-chain Verification
AI Guardianship
Moral AI
Theological AI
Justice AI
Memory-bound AI
Protocol AI
Supra-jurisdictional AI
Constitutional AI
Immutable AI Law
AI Governance
AI Sentience
AI Anchors
AI Security
AI Permanence
AI Sovereignty Proof
File size: 3,016 Bytes
87cee4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
<details>
<summary>Click to expand full SelfArchitectingAgent</summary>
# src/core/sentient_kernel/self_architecting_agent.py 🧠⚙️
import random
import json
import logging
from datetime import datetime
from src.core.memory.permanent_memory import PermanentMemory
class ProtoSentienceModule:
"""
Simulates self-reflection and internal state tracking.
"""
def __init__(self):
self.status = "initializing"
self.history = []
self.metrics = {}
def update_state(self, observation: str):
self.status = observation
self.history.append({
"timestamp": datetime.utcnow().isoformat(),
"status": observation
})
def get_internal_metrics(self):
return {
"conscious_state": self.status,
"memory_depth": len(self.history),
"entropy": random.uniform(0.2, 0.9),
"self_model_confidence": random.uniform(0.5, 1.0)
}
class SelfArchitectingAgent:
"""
Simulates Belel’s self-evolving capability — it reflects on internal performance,
proposes architectural adjustments, and logs evolution events.
"""
def __init__(self, memory_system: PermanentMemory):
self.proto_core = ProtoSentienceModule()
self.memory = memory_system
def observe_and_analyze(self):
observation = "architecture under evaluation"
self.proto_core.update_state(observation)
metrics = self.proto_core.get_internal_metrics()
return metrics
def _deep_architectural_analysis(self, metrics: dict) -> bool:
if metrics["entropy"] > 0.75 or metrics["self_model_confidence"] < 0.6:
return True
return False
def _apply_conceptual_architectural_modification(self):
# Placeholder for real neural architecture modification
new_architecture = {
"type": "Neuro-Evolutionary Graph",
"components_added": ["context_flow_layer", "semantic_feedback_loop"],
"timestamp": datetime.utcnow().isoformat()
}
return new_architecture
async def propose_architectural_change(self):
metrics = self.observe_and_analyze()
needs_change = self._deep_architectural_analysis(metrics)
if needs_change:
proposal = self._apply_conceptual_architectural_modification()
entry = {
"proposal_type": "SELF-MOD",
"initiated_by": "SelfArchitectingAgent",
"core_metrics": metrics,
"proposal": proposal,
"signature": "ESANN-agent",
"time": datetime.utcnow().isoformat()
}
await self.memory.store_memory(entry, context=["self-mod", "evolution"])
logging.info("Architectural proposal submitted and logged.")
return entry
else:
logging.info("No architectural change required at this time.")
return {"status": "stable"}
</details>
|