File size: 14,277 Bytes
4b9161a
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f37887d88b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f37887d8940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f37887d89d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f37887d8a60>", "_build": "<function ActorCriticPolicy._build at 0x7f37887d8af0>", "forward": "<function ActorCriticPolicy.forward at 0x7f37887d8b80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f37887d8c10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f37887d8ca0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f37887d8d30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f37887d8dc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f37887d8e50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f37887d8ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f37887dd380>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678638205093670135, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHi1M77yuXm/GB3kPQNLHD+haALAaxkrPvS/AT6mdDe/zYpAwDD9Ir+H5GA/KrvJPnrWjb0z9qC/2UNEP4pr6D9NZfu+m0H0v1TgMT+Lghc+e5VLP/StuD/5n0+/nXItPExwQD91LMo+pnEOP5A6rb+CT1c/yhgyv5Iomj4Y7o8/VswIvq0wPb98HDI/c4g/v/OFDcCMzZy/3jKSPzjUF0AaS4I+j1PnvwIohL7bVJm/Zg1vPz5AI7872ZE+RuPWvzxy4776R4Q/Z/FPv1kykDwSR6q/dSzKPqZxDj+QOq2//AR2P/W06L73ANQ+3U2GPeCUpz+LwwdA70e5PwrfHL/o1Rc/++sEwO8LK0ClcXA9NCvOviS6rz/7sMa/j+mtv1P7iz7lsmC8PTNOPw1ec7/sbRQ+Xohlv0rJZD1pkzU+THBAP3Usyj6mcQ4/kDqtv+zmdD/AYoW/wTRkPcDHEkC0/EtAFCm8vvJEsT9IwaC+XdsOwPwCrL/soKa+e6y8PbS/bz+f+Nc/sDyhvzUuiz9zGq4/pspMvaXMMD+C6cK/IKpXv46dJT3Z0IC+SJD7vhJHqr91LMo+lgrmvwgpPT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAATDF+0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA7MbsvQAAAABgvPO/AAAAAKSH570AAAAAgyzZPwAAAADWoDW9AAAAAMTu9z8AAAAAnnO7vAAAAACks+m/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArnLBtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJzLBb4AAAAAM/n6vwAAAAD8yge+AAAAANq42z8AAAAAyevzvAAAAACxtOI/AAAAAB/VPbsAAAAAUxvmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKGgQDYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDCTOm9AAAAAF8g5L8AAAAAzeVuPAAAAAA9c+s/AAAAAON1pLwAAAAAMd3YPwAAAACs0l+8AAAAAAZA3L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABSquwyAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAblYsvAAAAADyYwDAAAAAAKQcXz0AAAAAni/fPwAAAAAcbry9AAAAAPtc/j8AAAAAVcT6vAAAAACU+Nq/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHRhXv+fh/CMAWyUTegDjAF0lEdAq9bexQizLXV9lChoBkdAgDGbtRekYWgHTegDaAhHQKvZjr8BMi91fZQoaAZHQH3SRgqmTDBoB03oA2gIR0Cr2dkm6XjVdX2UKGgGR0CXt60cfeUIaAdN6ANoCEdAq+JRqM3qA3V9lChoBkdAl0bmtlqagGgHTegDaAhHQKvkmK77Kq51fZQoaAZHQJkTm1gH/tJoB03oA2gIR0Cr6OJ97WupdX2UKGgGR0B2J94/u9eyaAdN6ANoCEdAq+lUs189fXV9lChoBkdAmnDuSntOVWgHTegDaAhHQKvyeLSeAd51fZQoaAZHQHTg7xRVIZtoB03oA2gIR0Cr8+/bKzRhdX2UKGgGR0CXpaXDm8ujaAdN6ANoCEdAq/amz8gp0HV9lChoBkdAmY/kmY0EYGgHTegDaAhHQKv26biIcip1fZQoaAZHQJgK/akAPupoB03oA2gIR0Cr/tZ1vES/dX2UKGgGR0CZXhU0Nz8xaAdN6ANoCEdArAClHtnf23V9lChoBkdAe8qCMPz4DmgHTegDaAhHQKwEqCtA9mp1fZQoaAZHQJxSsZR8+idoB03oA2gIR0CsBRcYQ8OkdX2UKGgGR0CTaV6LOzIFaAdN6ANoCEdArA9fx+az/3V9lChoBkdAlf6p4B3iaWgHTegDaAhHQKwQ3JEpiJB1fZQoaAZHQJc5ltJnQIFoB03oA2gIR0CsE2nTy8SPdX2UKGgGR0CYM6EXLvCuaAdN6ANoCEdArBOsf/3nIXV9lChoBkdAmyuoT4+KTGgHTegDaAhHQKwbaLqD9O11fZQoaAZHQJO0yi0v4/NoB03oA2gIR0CsHNlvZRKpdX2UKGgGR0CSHIytFKChaAdN6ANoCEdArB+MUXYUWXV9lChoBkdAlx9C8jAzpGgHTegDaAhHQKwf7LpRoAZ1fZQoaAZHQJOAS7I1cdJoB03oA2gIR0CsK8Z1vES/dX2UKGgGR0CQCcCUornUaAdN6ANoCEdArC1L2WY4Q3V9lChoBkdAk2r/HT7VKGgHTegDaAhHQKwwAu3+dbx1fZQoaAZHQJXGsEU0vXdoB03oA2gIR0CsMEcwHqu9dX2UKGgGR0CWNkd92HLzaAdN6ANoCEdArDgACZF5OnV9lChoBkdAlmzHCbc452gHTegDaAhHQKw5k+2VmjF1fZQoaAZHQGP/T7di2DxoB03oA2gIR0CsPW99Dx9YdX2UKGgGR0CT2yCaJAMVaAdN6ANoCEdArD3QrpaA4HV9lChoBkdAX4oBjnV5KWgHTegDaAhHQKxLeR3eN1h1fZQoaAZHQJWOLiMo+fRoB03oA2gIR0CsTfKmj0tidX2UKGgGR0CKmGF9roGIaAdN6ANoCEdArFCn2/SH/XV9lChoBkdAkdE1Id2gWmgHTegDaAhHQKxQ7dznzQN1fZQoaAZHQGPlVoHs1KpoB03oA2gIR0CsWMNC7btadX2UKGgGR0CI0A0Xxe9jaAdN6ANoCEdArFo7tsvZiHV9lChoBkdAlyF3gLqlg2gHTegDaAhHQKxc3k92X9l1fZQoaAZHQJCNIewLVnVoB03oA2gIR0CsXSI2fkFOdX2UKGgGR0CN9C7Wd3B6aAdN6ANoCEdArGZHjABT43V9lChoBkdAlIepO32EkGgHTegDaAhHQKxo3E74i5d1fZQoaAZHQJZFxtFa0QdoB03oA2gIR0CsbUalchTwdX2UKGgGR0CUrQqEeyRkaAdN6ANoCEdArG2/E4vN/3V9lChoBkdAkOnJO8Cgb2gHTegDaAhHQKx1f2wmmch1fZQoaAZHQJUwErPMSsdoB03oA2gIR0CsdvWVE/jbdX2UKGgGR0CRC8wvQF9saAdN6ANoCEdArHlxYkmhNHV9lChoBkdAkpC0JrtVrGgHTegDaAhHQKx5s+BYmsx1fZQoaAZHQJfWEDTz/ZNoB03oA2gIR0CsgVt0eU6gdX2UKGgGR0CasKAymALBaAdN6ANoCEdArINEyLyc1HV9lChoBkdAlfaIvalDW2gHTegDaAhHQKyHKg/1QIl1fZQoaAZHQJcU+6y0KJFoB03oA2gIR0Csh5Fpfx+bdX2UKGgGR0CW+ww5eZ5SaAdN6ANoCEdArJFUynDR+nV9lChoBkdAmAJVnmJWNmgHTegDaAhHQKyS0MkyDZl1fZQoaAZHQJGdc8nuy/toB03oA2gIR0CslWHLA57xdX2UKGgGR0CVTsEqlP8AaAdN6ANoCEdArJWiG8EmpnV9lChoBkdAjMs7D2rXDmgHTegDaAhHQKydpM6BAfN1fZQoaAZHQJdbcJLM9r5oB03oA2gIR0Csnxf+S8radX2UKGgGR8A18pRXOnl5aAdNCQFoCEdArKDK2v0ROHV9lChoBkdAjJTGLLpzLmgHTegDaAhHQKyiHypaRp11fZQoaAZHQJGLGbAk9lpoB03oA2gIR0Cson0QCjk/dX2UKGgGR0CU6RPFvQ4TaAdN6ANoCEdArLA0hA4XGnV9lChoBkdAlLt3VoYek2gHTegDaAhHQKyy2pvP1L91fZQoaAZHQJZeHgpBomJoB03oA2gIR0CstEEZBLPEdX2UKGgGR0CVCPJgssg/aAdN6ANoCEdArLSvpMYdhnV9lChoBkdAkdLSQgcLjWgHTegDaAhHQKy/pYHPeHl1fZQoaAZHQIdfgNb1RLtoB03oA2gIR0Cswfwa72+PdX2UKGgGR0CVJITFVDKHaAdN6ANoCEdArMMwn6VMVXV9lChoBkdAji08IAwPAmgHTegDaAhHQKzDjiYsunN1fZQoaAZHQImtMEidJ8RoB03oA2gIR0Csz+dp7CzkdX2UKGgGR0CWTynBciW3aAdN6ANoCEdArNGvX/YJ3XV9lChoBkdAdcPJEH+qBGgHTegDaAhHQKzSj420iQl1fZQoaAZHQEjSbLlmvntoB03oA2gIR0Cs0tC0OVgQdX2UKGgGR0CXMw4axX4kaAdN6ANoCEdArNxCZtvXLHV9lChoBkdAl08de6ZpjGgHTegDaAhHQKzd+JD3M6l1fZQoaAZHQJMWFuxbB45oB03oA2gIR0Cs3s3okiUxdX2UKGgGR0CUAH0tRNypaAdN6ANoCEdArN8UfRu0kXV9lChoBkdAhTx+UQkHEGgHTegDaAhHQKzs72jfvWp1fZQoaAZHQIoDCUkfLcNoB03oA2gIR0Cs7rnFYMfBdX2UKGgGR0CGb6qqfe1saAdN6ANoCEdArO+amygPE3V9lChoBkdAkheupfhMrWgHTegDaAhHQKzv2k690zV1fZQoaAZHQJGihjI7vG9oB03oA2gIR0Cs+R2BSUC8dX2UKGgGR0CCS8g5imVJaAdN6ANoCEdArPrh79hqkHV9lChoBkdAld6skpqh12gHTegDaAhHQKz7wtdzGPx1fZQoaAZHQIX5hvBJqZdoB03oA2gIR0Cs/A+MIeHSdX2UKGgGR0CRXjDDCP6saAdN6ANoCEdArQkZLZi/f3V9lChoBkdAkeZzeXRgJGgHTegDaAhHQK0LCRHww0x1fZQoaAZHQJXUkw482aVoB03oA2gIR0CtC9efh/AkdX2UKGgGR0CQT3hxo7FLaAdN6ANoCEdArQwdC5VfeHV9lChoBkdAjqw5zPrv9mgHTegDaAhHQK0Vd3X7LuB1fZQoaAZHQJdL7vphWo5oB03oA2gIR0CtFywq7ROUdX2UKGgGR0CLhbQNTcZcaAdN6ANoCEdArRf7Axi5NHV9lChoBkdAmAaEY4yXU2gHTegDaAhHQK0YQcx0uDl1fZQoaAZHQJCHVGPPszFoB03oA2gIR0CtI7R0EHMVdX2UKGgGR0B5gtpBX0XhaAdN6ANoCEdArSdiL876pHV9lChoBkdAgey+so2GZmgHTegDaAhHQK0pMZXMhX91fZQoaAZHQIVlI8SwnploB03oA2gIR0CtKdgbp/wzdX2UKGgGR0CR30bo8p1BaAdN6ANoCEdArTYsDMeOn3V9lChoBkdAgD4VSn+AE2gHTegDaAhHQK035Y4hllN1fZQoaAZHQI08Nn003wVoB03oA2gIR0CtOL3Zf2K3dX2UKGgGR0COKfWnTAnEaAdN6ANoCEdArTj+gvlEJHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}