Upload processing_phi3_v.py
Browse filesUpdate the phi3-v processor to support multi-frame images as input.
- processing_phi3_v.py +34 -11
processing_phi3_v.py
CHANGED
@@ -41,7 +41,7 @@ from transformers.image_transforms import (
|
|
41 |
from transformers.image_utils import (
|
42 |
OPENAI_CLIP_MEAN,
|
43 |
OPENAI_CLIP_STD,
|
44 |
-
|
45 |
make_list_of_images,
|
46 |
valid_images,
|
47 |
)
|
@@ -57,6 +57,7 @@ if is_vision_available():
|
|
57 |
import torch
|
58 |
import torchvision
|
59 |
|
|
|
60 |
|
61 |
def padding_336(b):
|
62 |
width, height = b.size
|
@@ -139,6 +140,11 @@ def pad_to_max_num_crops_tensor(images, max_crops=5):
|
|
139 |
images = torch.cat([images, pad], dim=0)
|
140 |
return images
|
141 |
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
class Phi3VImageProcessor(BaseImageProcessor):
|
144 |
r"""
|
@@ -330,7 +336,7 @@ class Phi3VProcessor(ProcessorMixin):
|
|
330 |
def __call__(
|
331 |
self,
|
332 |
text: Union[TextInput, List[TextInput]],
|
333 |
-
images: ImageInput = None,
|
334 |
padding: Union[bool, str, PaddingStrategy] = False,
|
335 |
truncation: Union[bool, str, TruncationStrategy] = None,
|
336 |
max_length=None,
|
@@ -382,6 +388,8 @@ class Phi3VProcessor(ProcessorMixin):
|
|
382 |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
383 |
"""
|
384 |
if images is not None:
|
|
|
|
|
385 |
image_inputs = self.image_processor(images, return_tensors=return_tensors)
|
386 |
else:
|
387 |
image_inputs = {}
|
@@ -421,7 +429,14 @@ class Phi3VProcessor(ProcessorMixin):
|
|
421 |
return BatchFeature(data={**model_inputs})
|
422 |
|
423 |
pattern = r"<\|image_\d+\|>"
|
424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
|
426 |
if 'num_img_tokens' in images:
|
427 |
num_img_tokens = images['num_img_tokens']
|
@@ -433,18 +448,23 @@ class Phi3VProcessor(ProcessorMixin):
|
|
433 |
images, image_sizes = images['pixel_values'], images['image_sizes']
|
434 |
|
435 |
# image_tags needs to start from 1 to n
|
436 |
-
image_tags = re.findall(pattern, texts)
|
437 |
# image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
|
438 |
# image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
|
439 |
-
|
440 |
-
|
|
|
|
|
|
|
|
|
|
|
441 |
# image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
|
442 |
# check the condition
|
443 |
assert unique_image_ids == list(range(1, len(unique_image_ids) + 1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
|
444 |
# total images must be the same as the number of image tags
|
445 |
assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
|
446 |
|
447 |
-
image_ids_pad = [[-iid]
|
448 |
|
449 |
def insert_separator(X, sep_list):
|
450 |
if len(X) > len(sep_list):
|
@@ -452,12 +472,15 @@ class Phi3VProcessor(ProcessorMixin):
|
|
452 |
return [ele for sublist in zip(X, sep_list) for ele in sublist]
|
453 |
|
454 |
input_ids = []
|
455 |
-
|
456 |
-
|
457 |
-
|
|
|
|
|
458 |
|
459 |
-
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
460 |
attention_mask = (input_ids > -1000000).to(torch.long)
|
|
|
461 |
|
462 |
return BatchFeature(data={"input_ids": input_ids,
|
463 |
"attention_mask": attention_mask,
|
|
|
41 |
from transformers.image_utils import (
|
42 |
OPENAI_CLIP_MEAN,
|
43 |
OPENAI_CLIP_STD,
|
44 |
+
is_valid_image,
|
45 |
make_list_of_images,
|
46 |
valid_images,
|
47 |
)
|
|
|
57 |
import torch
|
58 |
import torchvision
|
59 |
|
60 |
+
MultiFrameImageInput = Union[List[List["Image.Image"]], List[List[np.ndarray]], List[List["torch.Tensor"]]]
|
61 |
|
62 |
def padding_336(b):
|
63 |
width, height = b.size
|
|
|
140 |
images = torch.cat([images, pad], dim=0)
|
141 |
return images
|
142 |
|
143 |
+
def is_multi_frames(images):
|
144 |
+
if isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)):
|
145 |
+
return is_valid_image(images[0][0])
|
146 |
+
else:
|
147 |
+
return False
|
148 |
|
149 |
class Phi3VImageProcessor(BaseImageProcessor):
|
150 |
r"""
|
|
|
336 |
def __call__(
|
337 |
self,
|
338 |
text: Union[TextInput, List[TextInput]],
|
339 |
+
images: Union[ImageInput, MultiFrameImageInput] = None,
|
340 |
padding: Union[bool, str, PaddingStrategy] = False,
|
341 |
truncation: Union[bool, str, TruncationStrategy] = None,
|
342 |
max_length=None,
|
|
|
388 |
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
389 |
"""
|
390 |
if images is not None:
|
391 |
+
if is_multi_frames(images):
|
392 |
+
images = [image for sample_images in images for image in sample_images]
|
393 |
image_inputs = self.image_processor(images, return_tensors=return_tensors)
|
394 |
else:
|
395 |
image_inputs = {}
|
|
|
429 |
return BatchFeature(data={**model_inputs})
|
430 |
|
431 |
pattern = r"<\|image_\d+\|>"
|
432 |
+
if isinstance(texts, str):
|
433 |
+
texts = [texts]
|
434 |
+
|
435 |
+
prompt_chunks = []
|
436 |
+
image_tags = []
|
437 |
+
for text in texts:
|
438 |
+
prompt_chunks.append([self.tokenizer(chunk, truncation=truncation, max_length=max_length).input_ids for chunk in re.split(pattern, text)])
|
439 |
+
image_tags.append(re.findall(pattern, text))
|
440 |
|
441 |
if 'num_img_tokens' in images:
|
442 |
num_img_tokens = images['num_img_tokens']
|
|
|
448 |
images, image_sizes = images['pixel_values'], images['image_sizes']
|
449 |
|
450 |
# image_tags needs to start from 1 to n
|
451 |
+
# image_tags = re.findall(pattern, texts)
|
452 |
# image_ids = [int(s.split("|")[1].split("_")[-1]) * -1 for s in image_tags]
|
453 |
# image_ids_pad = [[iid]*num_img_tokens[i] for i, iid in enumerate(image_ids)]
|
454 |
+
|
455 |
+
image_ids_counter = 0
|
456 |
+
image_ids = []
|
457 |
+
for tags in image_tags:
|
458 |
+
image_ids.append([int(s.split("|")[1].split("_")[-1]) + image_ids_counter for s in tags])
|
459 |
+
image_ids_counter += len(tags)
|
460 |
+
unique_image_ids = sorted(list(set([iid for ids in image_ids for iid in ids])))
|
461 |
# image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be [1, 4, 5]
|
462 |
# check the condition
|
463 |
assert unique_image_ids == list(range(1, len(unique_image_ids) + 1)), f"image_ids must start from 1, and must be continuous int, e.g. [1, 2, 3], cannot be {unique_image_ids}"
|
464 |
# total images must be the same as the number of image tags
|
465 |
assert len(unique_image_ids) == len(images), f"total images must be the same as the number of image tags, got {len(unique_image_ids)} image tags and {len(images)} images"
|
466 |
|
467 |
+
image_ids_pad = [[[-iid]*num_img_tokens[iid-1] for iid in ids] for ids in image_ids]
|
468 |
|
469 |
def insert_separator(X, sep_list):
|
470 |
if len(X) > len(sep_list):
|
|
|
472 |
return [ele for sublist in zip(X, sep_list) for ele in sublist]
|
473 |
|
474 |
input_ids = []
|
475 |
+
for sub_prompt_chunks, sub_image_ids_pad in zip(prompt_chunks, image_ids_pad):
|
476 |
+
input_ids.append([])
|
477 |
+
offset = 0
|
478 |
+
for x in insert_separator(sub_prompt_chunks, sub_image_ids_pad):
|
479 |
+
input_ids[-1].extend(x[offset:])
|
480 |
|
481 |
+
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
482 |
attention_mask = (input_ids > -1000000).to(torch.long)
|
483 |
+
attention_mask[input_ids == self.tokenizer.pad_token_id] = 0
|
484 |
|
485 |
return BatchFeature(data={"input_ids": input_ids,
|
486 |
"attention_mask": attention_mask,
|