File size: 1,238 Bytes
9b501ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
frameworks:
- Pytorch
license: other
tasks:
- image-text-to-text
language:
- cn
- en
---
# GLM-Edge-V-5B
快速推理代码:
```python
import torch
from PIL import Image
from transformers import (
AutoTokenizer,
AutoImageProcessor,
AutoModelForCausalLM,
)
url = "img.png"
messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "describe this image"}]}]
image = Image.open(url)
model_dir = "THUDM/glm-edge-v-5b"
processor = AutoImageProcessor.from_pretrained(model_dir, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_dir,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
inputs = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_dict=True, tokenize=True, return_tensors="pt"
).to(next(model.parameters()).device)
generate_kwargs = {
**inputs,
"pixel_values": torch.tensor(processor(image).pixel_values).to(next(model.parameters()).device),
}
output = model.generate(**generate_kwargs, max_new_tokens=100)
print(tokenizer.decode(output[0][len(inputs["input_ids"][0]):], skip_special_tokens=True))
``` |