File size: 7,408 Bytes
bc7df4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# coding=utf-8
# Copyright 2024 The GLM & ZhipuAI team and HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from transformers.configuration_utils import PretrainedConfig


class GlmConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`GlmModel`]. It is used to instantiate an Glm
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the Glm-4-9b-chat.
    e.g. [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat)
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.
    Args:
        vocab_size (`int`, *optional*, defaults to 151552):
            Vocabulary size of the Glm model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`GlmModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 13696):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 40):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer decoder.
        num_key_value_heads (`int`, *optional*, defaults to 2):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        head_dim (`int`, *optional*, defaults to 128):
            The attention head dimension.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The legacy activation function. It is overwritten by the `hidden_activation`.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        max_position_embeddings (`int`, *optional*, defaults to 131072):
            The maximum sequence length that this model might ever be used with.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1.5625e-07):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        rope_theta (`float`, *optional*, defaults to 10000.0):
            The base period of the RoPE embeddings.
        pad_token_id (`int`, *optional*, defaults to 151329):
            Padding token id.
        eos_token_id (`int` | `list`, *optional*, defaults to `[151329, 151336, 151338]`):
            End of stream token id.
        bos_token_id (`int`, *optional*):
            Beginning of stream token id.
        attention_bias (`bool`, defaults to `False`, *optional*, defaults to `True`):
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
        boi_token_id (`int`, *optional*, defaults to 151339):
            Beginning of image token id.
        eoi_token_id (`int` | `list`, *optional*, defaults to `[151339, 151346, 151348]`):
            End of image token id.
        partial_rotary_factor (`float`, *optional*, defaults to 0.5):
            The partial rotary factor.
        vision_config (`VisionConfig`, *optional*, defaults to `None`):
            The vision configuration object.
    ```python
    >>> from transformers import GlmModel, GlmConfig
    >>> # Initializing a Glm glm-4-9b-chat style configuration
    >>> configuration = GlmConfig()
    >>> # Initializing a model from the glm-4-9b-chat style configuration
    >>> model = GlmModel(configuration)
    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "glm"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=65024,
        hidden_size=4096,
        intermediate_size=13696,
        num_hidden_layers=28,
        head_dim=128,
        num_attention_heads=32,
        max_position_embeddings=2048,
        attention_dropout=0.0,
        rms_norm_eps=1e-5,
        attention_bias=False,
        num_key_value_heads=1,
        rope_theta=10000.0,
        hidden_act="silu",
        initializer_range=0.02,
        use_cache=True,
        tie_word_embeddings=False,
        pad_token_id=59246,
        bos_token_id=None,
        eos_token_id=[59246, 59253, 59255],
        boi_token_id=59256,
        eoi_token_id=59257,
        vision_config=None,
        partial_rotary_factor=0.5,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.head_dim = head_dim
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.attention_bias = attention_bias
        self.attention_dropout = attention_dropout
        self.partial_rotary_factor = partial_rotary_factor
        self.boi_token_id = boi_token_id
        self.eoi_token_id = eoi_token_id
        self.vision_config = vision_config

        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )


__all__ = ["GlmConfig"]