File size: 11,582 Bytes
8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa ac792e3 8fe54fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import contextlib
import logging
import math
from typing import List, Optional
import torch
import transformers
from torch import nn
LOGGER = logging.getLogger(__name__)
QUANT_LAYERS = [nn.Linear, nn.Conv2d, transformers.Conv1D]
def is_transformer_conv1d(layer):
return isinstance(layer, transformers.Conv1D)
# These two functions only work on per-channel symmetric quantization for weight
def get_weight_scale(weight, weight_bit_width):
weight_scale = (weight.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).half()
return weight_scale
def fake_quantize_weight(weight, weight_scale):
weight_scale = weight_scale[:, None]
fake_quantized_weight = torch.round(weight / weight_scale) * weight_scale
return fake_quantized_weight
class GPTQLayerWrapper:
def __init__(self, layer_name, layer, weight_bit_width):
super().__init__()
self.layer_name = layer_name
self.layer = layer
self.device = layer.weight.device
columns = layer.weight.shape[1]
self.columns = columns
self.H = torch.zeros((columns, columns), device=self.device)
self.nsamples = 0
self.is_record = True
self.weight_bit_width = weight_bit_width
self.weight_scale = None
def record_h(self, x):
if self.is_record:
x = x.detach().clone()
if len(x.shape) == 2:
x = x.unsqueeze(0)
batch = x.shape[0]
if isinstance(self.layer, nn.Linear) or is_transformer_conv1d(self.layer):
if len(x.shape) == 3:
x = x.reshape((-1, x.shape[-1]))
x = x.t()
if isinstance(self.layer, nn.Conv2d):
unfold = nn.Unfold(
self.layer.kernel_size,
dilation=self.layer.dilation,
padding=self.layer.padding,
stride=self.layer.stride
)
x = unfold(x)
x = x.permute([1, 0, 2])
x = x.flatten(1)
self.H *= self.nsamples / (self.nsamples + batch)
self.nsamples += batch
x = math.sqrt(2 / self.nsamples) * x.float()
self.H += x.matmul(x.t())
def quant_weight(self, blocksize=128, percdamp=.01, groupsize=-1):
if groupsize != -1:
raise RuntimeError("Group quantization of gptq quantizer is not supported for now")
weight = self.layer.weight.data.clone()
if isinstance(self.layer, nn.Conv2d):
weight = weight.flatten(1)
if is_transformer_conv1d(self.layer):
weight = weight.t()
weight = weight.float()
weight_scale = get_weight_scale(weight, self.weight_bit_width)
# todo: use buffer to store scale
self.weight_scale = weight_scale
H = self.H
dead = torch.diag(H) == 0
H[dead, dead] = 1
weight[:, dead] = 0
losses = torch.zeros_like(weight)
Q = torch.zeros_like(weight)
damp = percdamp * torch.mean(torch.diag(H))
diag = torch.arange(self.columns, device=self.device)
H[diag, diag] += damp
try:
H = torch.linalg.cholesky(H)
H = torch.cholesky_inverse(H)
H = torch.linalg.cholesky(H, upper=True)
except Exception:
logging.warning(f"Warning: cannot do compression on layer {self.layer_name} because of inverse error")
return
if H.isnan().any():
logging.warning(f"Warning: cannot do compression on layer {self.layer_name} because of inverse error")
return
hinv = H
for i1 in range(0, self.columns, blocksize):
i2 = min(i1 + blocksize, self.columns)
count = i2 - i1
w1 = weight[:, i1:i2].clone()
q1 = torch.zeros_like(w1)
total_err = torch.zeros_like(w1)
losses1 = torch.zeros_like(w1)
hinv1 = hinv[i1:i2, i1:i2]
for i in range(count):
w = w1[:, i]
d = hinv1[i, i]
q = fake_quantize_weight(w.unsqueeze(1), weight_scale).flatten()
q1[:, i] = q
losses1[:, i] = (w - q) ** 2 / d ** 2
err = (w - q) / d
w1[:, i:] -= err.unsqueeze(1).matmul(hinv1[i, i:].unsqueeze(0))
total_err[:, i] = err
Q[:, i1:i2] = q1
losses[:, i1:i2] = losses1 / 2
weight[:, i2:] -= total_err.matmul(hinv[i1:i2, i2:])
if torch.cuda.is_available():
torch.cuda.synchronize()
if is_transformer_conv1d(self.layer):
Q = Q.t()
shape = self.layer.weight.shape
dtype = self.layer.weight.data.dtype
del self.layer.weight
setattr(self.layer, "weight", nn.Parameter(Q.reshape(shape).to(dtype), requires_grad=False))
del self.H
class GPTQBlockWrapper:
def __init__(self, block_name: str, block: nn.Module, weight_bit_width=8):
self.layer_wrappers = {}
self.hook_handles = []
# block order in the whole network
self.order = 0
self.block_name = block_name
def get_hook(layer_name):
def record_hook(_, x):
self.layer_wrappers[layer_name].record_h(x[0])
return record_hook
for layer_name, layer in block.named_modules():
if isinstance(layer, tuple(QUANT_LAYERS)):
full_layer_name = f"{block_name}.{layer_name}" if layer_name else f"{block_name}"
self.layer_wrappers[full_layer_name] = GPTQLayerWrapper(full_layer_name, layer, weight_bit_width)
handle = layer.register_forward_pre_hook(get_hook(full_layer_name))
self.hook_handles.append(handle)
def quant_block(self):
for _, wrapper in self.layer_wrappers.items():
wrapper.quant_weight()
for h in self.hook_handles:
h.remove()
def set_order(self, idx):
self.order = idx
def get_order(self):
return self.order
def enable(self):
for n, l in self.layer_wrappers.items():
l.is_record = True
def disable(self):
for n, l in self.layer_wrappers.items():
l.is_record = False
class GPTQuantizer:
def __init__(self, block_type: Optional[List[type]] = None):
self.gptq_block_wrappers = {}
self.block_type = block_type
def wrap_model(self, model: nn.Module, weight_bit_width=8):
def wrap_block(m, prefix=""):
for name, child in m.named_children():
child_prefix = f"{prefix}.{name}" if prefix else name
if isinstance(child, tuple(self.block_type)):
self.gptq_block_wrappers[name] = GPTQBlockWrapper(child_prefix, child, weight_bit_width)
LOGGER.debug(f"Calibrate block {child_prefix} as a whole block in GPTQ")
else:
wrap_block(child, child_prefix)
wrap_block(model)
return model
@property
def calibration_iters(self):
return len(self.gptq_block_wrappers)
@contextlib.contextmanager
def record_order(self):
counter = 0
record_handles = []
orders = {}
try:
def get_record_order_hook(block_name):
def record_hook(*args, **kwargs):
nonlocal counter
if block_name not in orders:
orders[block_name] = counter
counter += 1
return record_hook
for block_name, block_wrapper in self.gptq_block_wrappers.items():
# disable the record
for _, layer_wrapper in block_wrapper.layer_wrappers.items():
layer_wrapper.is_record = False
one_layer_wrapper_in_block = list(block_wrapper.layer_wrappers.values())[0]
handles = one_layer_wrapper_in_block.layer.register_forward_pre_hook(get_record_order_hook(block_name))
record_handles.append(handles)
yield
except Exception as e:
logging.warning(e)
finally:
for block_name, order in orders.items():
self.gptq_block_wrappers[block_name].set_order(order)
for h in record_handles:
h.remove()
for _, block_wrapper in self.gptq_block_wrappers.items():
# disable the record
for _, layer_wrapper in block_wrapper.layer_wrappers.items():
layer_wrapper.is_record = True
@contextlib.contextmanager
def start_calib_iter(self, i):
assert i < len(self.gptq_block_wrappers)
target_block_wrapper = None
try:
for _, block_wrapper in self.gptq_block_wrappers.items():
if block_wrapper.get_order() == i:
block_wrapper.enable()
target_block_wrapper = block_wrapper
else:
block_wrapper.disable()
yield
finally:
target_block_wrapper.quant_block()
def release_reference(self):
# delete reference so that `torch.cuda.empty_cache()` can
# release all the gpu memory cache used during calibration
for _, block_wrapper in self.gptq_block_wrappers.items():
for _, layer_wrapper in block_wrapper.layer_wrappers.items():
del layer_wrapper.layer
torch.cuda.empty_cache()
def locate_parent(root: nn.Module, full_path: str):
parent = root
path = full_path.split('.')
for p in path[:-1]:
parent = getattr(parent, p)
return parent, path[-1]
@torch.no_grad()
def gptq_quantize(model, tokenizer, weight_bit_width, calib_data):
from .modeling_chatglm import GLMBlock
from .quantization import QuantizedLinear
quantizer = GPTQuantizer([GLMBlock])
calib_model = quantizer.wrap_model(model, weight_bit_width)
with quantizer.record_order():
calib_model.chat(tokenizer, calib_data[0], history=[])
logging.info("Start doing calibration using GPTQ ")
for i in range(quantizer.calibration_iters):
logging.info(f"Process: {i + 1}/{quantizer.calibration_iters}")
# todo: should add early return to speed up the calibration
# todo: add cpu offload to reduce the gpu memory requirements.
with quantizer.start_calib_iter(i):
for prompt in calib_data:
model.chat(tokenizer, prompt, history=[])
# replace the fp16 linear with quantized linear
for _, block_wrapper in quantizer.gptq_block_wrappers.items():
for layer_name, layer_wrapper in block_wrapper.layer_wrappers.items():
layer = layer_wrapper.layer
parent, name_in_parent = locate_parent(model, layer_name)
quantized_layer = QuantizedLinear(
weight_bit_width=weight_bit_width,
weight_tensor=layer.weight,
bias_tensor=layer.bias,
weight_scale=layer_wrapper.weight_scale,
in_features=layer.in_features,
out_features=layer.out_features,
bias=True,
dtype=torch.half,
device=layer_wrapper.device,
empty_init=False
)
parent.add_module(name_in_parent, quantized_layer)
# release the memory caache during calibration
quantizer.release_reference()
return
|