CogView4-6B / README.md
Yuxuan Zhang
update
fdddd50
|
raw
history blame
7.44 kB
metadata
license: apache-2.0
language:
  - zh
  - en
base_model:
  - THUDM/glm-4-9b
pipeline_tag: text-to-image
library_name: diffusers

CogView4-6B

πŸ€— Space | 🌐 Github | πŸ“œ arxiv

img

Inference Requirements and Model Introduction

  • Resolution: Width and height must be between 512px and 2048px, divisible by 32, and ensure the maximum number of pixels does not exceed 2^21 px.
  • Precision: BF16 / FP32 (FP16 is not supported as it will cause overflow resulting in completely black images)

Using BF16 precision with batchsize=4 for testing, the memory usage is shown in the table below:

Resolution enable_model_cpu_offload OFF enable_model_cpu_offload ON enable_model_cpu_offload ON
Text Encoder 4bit
512 * 512 33GB 20GB 13G
1280 * 720 35GB 20GB 13G
1024 * 1024 35GB 20GB 13G
1920 * 1280 39GB 20GB 14G
2048 * 2048 43GB 21GB 14G

Quick Start

First, ensure you install the diffusers library from source.

pip install git+https://github.com/huggingface/diffusers.git
cd diffusers
pip install -e .

Then, run the following code:

from diffusers import CogView4Pipeline

pipe = CogView4Pipeline.from_pretrained("THUDM/CogView4-6B", torch_dtype=torch.bfloat16)

# Open it for reduce GPU memory usage
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()

prompt = "A vibrant cherry red sports car sits proudly under the gleaming sun, its polished exterior smooth and flawless, casting a mirror-like reflection. The car features a low, aerodynamic body, angular headlights that gaze forward like predatory eyes, and a set of black, high-gloss racing rims that contrast starkly with the red. A subtle hint of chrome embellishes the grille and exhaust, while the tinted windows suggest a luxurious and private interior. The scene conveys a sense of speed and elegance, the car appearing as if it's about to burst into a sprint along a coastal road, with the ocean's azure waves crashing in the background."
image = pipe(
    prompt=prompt,
    guidance_scale=3.5,
    num_images_per_prompt=1,
    num_inference_steps=50,
    width=1024,
    height=1024,
).images[0]

image.save("cogview4.png")

Model Metrics

We've tested on multiple benchmarks and achieved the following scores:

DPG-Bench

Model Overall Global Entity Attribute Relation Other
SDXL 74.65 83.27 82.43 80.91 86.76 80.41
PixArt-alpha 71.11 74.97 79.32 78.60 82.57 76.96
SD3-Medium 84.08 87.90 91.01 88.83 80.70 88.68
DALL-E 3 83.50 90.97 89.61 88.39 90.58 89.83
Flux.1-dev 83.79 85.80 86.79 89.98 90.04 89.90
Janus-Pro-7B 84.19 86.90 88.90 89.40 89.32 89.48
CogView4-6B 85.13 83.85 90.35 91.17 91.14 87.29

GenEval

Model Overall Single Obj. Two Obj. Counting Colors Position Color attribution
SDXL 0.55 0.98 0.74 0.39 0.85 0.15 0.23
PixArt-alpha 0.48 0.98 0.50 0.44 0.80 0.08 0.07
SD3-Medium 0.74 0.99 0.94 0.72 0.89 0.33 0.60
DALL-E 3 0.67 0.96 0.87 0.47 0.83 0.43 0.45
Flux.1-dev 0.66 0.98 0.79 0.73 0.77 0.22 0.45
Janus-Pro-7B 0.80 0.99 0.89 0.59 0.90 0.79 0.66
CogView4-6B 0.73 0.99 0.86 0.66 0.79 0.48 0.58

T2I-CompBench

Model Color Shape Texture 2D-Spatial 3D-Spatial Numeracy Non-spatial Clip Complex 3-in-1
SDXL 0.5879 0.4687 0.5299 0.2133 0.3566 0.4988 0.3119 0.3237
PixArt-alpha 0.6690 0.4927 0.6477 0.2064 0.3901 0.5058 0.3197 0.3433
SD3-Medium 0.8132 0.5885 0.7334 0.3200 0.4084 0.6174 0.3140 0.3771
DALL-E 3 0.7785 0.6205 0.7036 0.2865 0.3744 0.5880 0.3003 0.3773
Flux.1-dev 0.7572 0.5066 0.6300 0.2700 0.3992 0.6165 0.3065 0.3628
Janus-Pro-7B 0.5145 0.3323 0.4069 0.1566 0.2753 0.4406 0.3137 0.3806
CogView4-6B 0.7786 0.5880 0.6983 0.3075 0.3708 0.6626 0.3056 0.3869

Chinese Text Accuracy Evaluation

Model Precision Recall F1 Score Pick@4
Kolors 0.6094 0.1886 0.2880 0.1633
CogView4-6B 0.6969 0.5532 0.6168 0.3265

Citation

🌟 If you find our work helpful, please consider citing our paper and leaving valuable stars

@article{zheng2024cogview3,
  title={Cogview3: Finer and faster text-to-image generation via relay diffusion},
  author={Zheng, Wendi and Teng, Jiayan and Yang, Zhuoyi and Wang, Weihan and Chen, Jidong and Gu, Xiaotao and Dong, Yuxiao and Ding, Ming and Tang, Jie},
  journal={arXiv preprint arXiv:2403.05121},
  year={2024}
}

License

This model is released under the Apache 2.0 License.