File size: 4,670 Bytes
06e5c68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- layoutlmv4
model-index:
- name: Layoutlm_invoices
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Layoutlm_invoices

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the layoutlmv4 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0603
- Customer Address: {'precision': 0.7692307692307693, 'recall': 0.9090909090909091, 'f1': 0.8333333333333333, 'number': 11}
- Customer Name: {'precision': 0.8333333333333334, 'recall': 0.9090909090909091, 'f1': 0.8695652173913043, 'number': 11}
- Invoice Number: {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11}
- Tax Amount: {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11}
- Total Amount: {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11}
- Vendor Name: {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11}
- Overall Precision: 0.8986
- Overall Recall: 0.9394
- Overall F1: 0.9185
- Overall Accuracy: 0.9831

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 6
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Customer Address                                                                                        | Customer Name                                                                                           | Invoice Number                                                                                          | Tax Amount                                                 | Total Amount                                                                             | Vendor Name                                                                              | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 0.0714        | 1.25  | 10   | 0.0752          | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11}                | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | 0.9403            | 0.9545         | 0.9474     | 0.9864           |
| 0.0572        | 2.5   | 20   | 0.0603          | {'precision': 0.7692307692307693, 'recall': 0.9090909090909091, 'f1': 0.8333333333333333, 'number': 11} | {'precision': 0.8333333333333334, 'recall': 0.9090909090909091, 'f1': 0.8695652173913043, 'number': 11} | {'precision': 0.9090909090909091, 'recall': 0.9090909090909091, 'f1': 0.9090909090909091, 'number': 11} | {'precision': 1.0, 'recall': 1.0, 'f1': 1.0, 'number': 11} | {'precision': 1.0, 'recall': 0.9090909090909091, 'f1': 0.9523809523809523, 'number': 11} | {'precision': 0.9166666666666666, 'recall': 1.0, 'f1': 0.9565217391304348, 'number': 11} | 0.8986            | 0.9394         | 0.9185     | 0.9831           |


### Framework versions

- Transformers 4.32.1
- Pytorch 2.2.0+cpu
- Datasets 2.12.0
- Tokenizers 0.13.2