File size: 5,165 Bytes
aa9b327
 
 
 
07d3566
 
aa9b327
 
 
 
 
fc78795
75d30a7
6a8fdba
 
aa9b327
 
e36b0e9
aa9b327
 
38f3abf
 
 
 
 
 
 
 
 
 
 
 
aa9b327
 
fc78795
aa9b327
38f3abf
6a8fdba
 
 
 
 
 
 
 
 
 
257fe1e
6a8fdba
 
 
 
 
 
 
 
 
d19ac48
6a8fdba
 
49a23c0
6a8fdba
 
 
 
 
 
58ea16c
 
169feab
6a8fdba
75d30a7
 
 
 
 
 
e36b0e9
75d30a7
9fda058
75d30a7
 
 
 
9fda058
75d30a7
9fda058
75d30a7
27fb7b3
9fda058
27fb7b3
 
 
 
aa9b327
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
---
license: openrail++
language:
- en
widget:
 - text: "a beautiful illustration of a fantasy forest"
tags:
- stable-diffusion
- sygil-diffusion
- text-to-image
- sygil-devs
- finetune
- stable-diffusion-1.5
inference: true
pinned: true
---


# About the model
-----------------
This model is a fine-tune of Stable Diffusion v1.5, trained on the [Imaginary Network Expanded Dataset](https://github.com/Sygil-Dev/INE-dataset), with the big advantage of allowing the use of multiple namespaces (labeled tags) to control various parts of the final generation. 
While current models usually are prone to “context errors” and need substantial negative prompting to set them on the right track, the use of namespaces in this model (eg. “species:seal” or “studio:dc”) stop the model from misinterpreting a seal as the singer Seal, or DC comics as Washington DC.

As the model is fine-tuned on a wide variety of content, it’s able to generate many types of images and compositions, and easily outperforms the original model when it comes to portraits, architecture, reflections, fantasy, concept art, and landscapes without being hyper-specialized like other community fine-tunes that are currently available. 

**Note: The prompt engineering techniques needed are slightly different from other fine-tunes and the original SD 1.5, so while you can still use your favorite prompts, for best results you might need to tweak them to make use of namespaces. A more detailed guide will be available shortly, but the examples here and this [Dataset Explorer](https://huggingface.co/spaces/Sygil/INE-dataset-explorer) should be able to start you off on the right track.

If you find our work useful, please consider supporting us on [OpenCollective](https://opencollective.com/sygil_dev)! 

This model is still in its infancy, so feel free to give us feedback on our [Discord Server](https://discord.gg/UjXFsf6mTu) or on the discussions section on huggingface. We plan to improve it with more, better tags in the future, so any help is always welcome 😛
[![Join the Discord Server](https://badgen.net/discord/members/fTtcufxyHQ?icon=discord)](https://discord.gg/UjXFsf6mTu)


# Showcase
![Showcase image](pictures/showcase-6.jpg)


## Examples

Using the [🤗's Diffusers library](https://github.com/huggingface/diffusers) to run Sygil Diffusion in a simple and efficient manner.

```bash
pip install diffusers transformers accelerate scipy safetensors
```
Running the pipeline (if you don't swap the scheduler it will run with the default DDIM, in this example we are swapping it to DPMSolverMultistepScheduler):

```python
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler

model_id = "Sygil/Sygil-Diffusion"

# Use the DPMSolverMultistepScheduler (DPM-Solver++) scheduler here instead
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")

prompt = "a beautiful illustration of a fantasy forest"
image = pipe(prompt).images[0]
    
image.save("fantasy_forest_illustration.png")
```

**Notes**:
- Despite not being a dependency, we highly recommend you to install [xformers](https://github.com/facebookresearch/xformers) for memory efficient attention (better performance)
- If you have low GPU RAM available, make sure to add a `pipe.enable_attention_slicing()` after sending it to `cuda` for less VRAM usage (to the cost of speed).

## Available Checkpoints:
  - [Sygil Diffusion v0.1](https://huggingface.co/Sygil/Sygil-Diffusion/blob/main/sygil-diffusion-v0.1.ckpt): Trained for 800,000 steps
  - [sygil-diffusion-v0.2_1296090_lora.ckpt](https://huggingface.co/Sygil/Sygil-Diffusion/blob/main/sygil-diffusion-v0.2_1296090_lora.ckpt): Resumed from Sygil Diffusion v0.1 and now up to 1.29 million steps.

## Training

**Training Data**
The model was trained on the following dataset:
- [Imaginary Network Expanded Dataset](https://github.com/Sygil-Dev/INE-dataset) dataset.

**Hardware and others**
- **Hardware:** 1 x Nvidia RTX 3050 8GB GPU
- **Hours Trained:** 477 hours approximately.
- **Optimizer:** AdamW
- **Gradient Accumulations**: 1
- **Batch:** 1
- **Learning rate:** warmup to 1e-7 for 10,000 steps and then kept constant
- **Total Training Steps:** 1,296,090

Developed by: [ZeroCool94](https://huggingface.co/ZeroCool94) at [Sygil-Dev](https://github.com/Sygil-Dev/)

## Community Contributions:
  - [Kevin Turner (keturn)](https://huggingface.co/keturn): created the [INE-dataset-explorer](https://huggingface.co/spaces/Sygil/INE-dataset-explorer) space for better browsing of the INE dataset.
    
*This model card is based on the [Stable Diffusion v1](https://github.com/CompVis/stable-diffusion/blob/main/Stable_Diffusion_v1_Model_Card.md) and [DALL-E Mini model card](https://huggingface.co/dalle-mini/dalle-mini).*


# License
This model is open access and available to all, with a CreativeML Open RAIL++-M License further specifying rights and usage. [Please read the full license here](https://huggingface.co/stabilityai/stable-diffusion-2/blob/main/LICENSE-MODEL)