File size: 2,441 Bytes
3e31feb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: T5_small_title
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# T5_small_title
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4558
- Rouge1: 0.316
- Rouge2: 0.1498
- Rougel: 0.2735
- Rougelsum: 0.2728
- Gen Len: 16.495
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 100 | 2.8637 | 0.2464 | 0.093 | 0.207 | 0.2066 | 18.87 |
| No log | 2.0 | 200 | 2.6086 | 0.2702 | 0.1142 | 0.2303 | 0.2299 | 18.475 |
| No log | 3.0 | 300 | 2.5391 | 0.2943 | 0.1373 | 0.2572 | 0.2565 | 17.44 |
| No log | 4.0 | 400 | 2.5082 | 0.2997 | 0.1421 | 0.2636 | 0.2629 | 17.02 |
| 2.8756 | 5.0 | 500 | 2.4853 | 0.3111 | 0.145 | 0.271 | 0.2701 | 16.755 |
| 2.8756 | 6.0 | 600 | 2.4729 | 0.3165 | 0.1501 | 0.2753 | 0.2745 | 16.555 |
| 2.8756 | 7.0 | 700 | 2.4635 | 0.3215 | 0.1533 | 0.2771 | 0.2768 | 16.51 |
| 2.8756 | 8.0 | 800 | 2.4601 | 0.3224 | 0.154 | 0.2773 | 0.2776 | 16.38 |
| 2.8756 | 9.0 | 900 | 2.4569 | 0.3167 | 0.1505 | 0.274 | 0.2733 | 16.495 |
| 2.5758 | 10.0 | 1000 | 2.4558 | 0.316 | 0.1498 | 0.2735 | 0.2728 | 16.495 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
|