File size: 2,441 Bytes
3e31feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: T5_small_title
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# T5_small_title

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4558
- Rouge1: 0.316
- Rouge2: 0.1498
- Rougel: 0.2735
- Rougelsum: 0.2728
- Gen Len: 16.495

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 100  | 2.8637          | 0.2464 | 0.093  | 0.207  | 0.2066    | 18.87   |
| No log        | 2.0   | 200  | 2.6086          | 0.2702 | 0.1142 | 0.2303 | 0.2299    | 18.475  |
| No log        | 3.0   | 300  | 2.5391          | 0.2943 | 0.1373 | 0.2572 | 0.2565    | 17.44   |
| No log        | 4.0   | 400  | 2.5082          | 0.2997 | 0.1421 | 0.2636 | 0.2629    | 17.02   |
| 2.8756        | 5.0   | 500  | 2.4853          | 0.3111 | 0.145  | 0.271  | 0.2701    | 16.755  |
| 2.8756        | 6.0   | 600  | 2.4729          | 0.3165 | 0.1501 | 0.2753 | 0.2745    | 16.555  |
| 2.8756        | 7.0   | 700  | 2.4635          | 0.3215 | 0.1533 | 0.2771 | 0.2768    | 16.51   |
| 2.8756        | 8.0   | 800  | 2.4601          | 0.3224 | 0.154  | 0.2773 | 0.2776    | 16.38   |
| 2.8756        | 9.0   | 900  | 2.4569          | 0.3167 | 0.1505 | 0.274  | 0.2733    | 16.495  |
| 2.5758        | 10.0  | 1000 | 2.4558          | 0.316  | 0.1498 | 0.2735 | 0.2728    | 16.495  |


### Framework versions

- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2