Supreeta03's picture
Supreeta03/wav2vec2-sentiment-analysis-CREMA
8c87d3b verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: wav2vec-best-CREMA-sentiment-analysis
    results: []

wav2vec-best-CREMA-sentiment-analysis

This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Top2 Accuracy: 0.8940
  • Loss: 0.8287
  • Accuracy: 0.7074

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Top2 Accuracy Validation Loss Accuracy
1.7824 0.98 43 0.4982 1.7749 0.2482
1.7115 1.99 87 0.5466 1.6566 0.3638
1.5255 2.99 131 0.6604 1.5017 0.4418
1.3716 4.0 175 0.7679 1.3359 0.5636
1.2436 4.98 218 0.8271 1.1862 0.6407
1.1366 5.99 262 0.8315 1.1223 0.6595
1.0322 6.99 306 0.8593 1.0422 0.6747
0.9668 8.0 350 0.8907 0.9335 0.7222
0.8932 8.98 393 0.8943 0.9093 0.7231
0.8431 9.99 437 0.8692 0.9163 0.7115
0.8047 10.99 481 0.8996 0.8488 0.7375
0.7444 12.0 525 0.8898 0.8611 0.7204
0.6921 12.98 568 0.8916 0.8399 0.7258
0.6973 13.99 612 0.8844 0.8425 0.7231
0.632 14.99 656 0.8880 0.8308 0.7249
0.6275 16.0 700 0.8862 0.8400 0.7177
0.6153 16.98 743 0.8934 0.8266 0.7330
0.5597 17.99 787 0.8934 0.8157 0.7357
0.5658 18.99 831 0.8862 0.8015 0.7446
0.54 20.0 875 0.8943 0.8368 0.7258
0.5301 20.98 918 0.9023 0.8095 0.7321
0.5262 21.99 962 0.8817 0.8521 0.7168
0.4754 22.99 1006 0.8987 0.8003 0.7428
0.4753 24.0 1050 0.8952 0.7988 0.7410
0.455 24.98 1093 0.8952 0.7902 0.7419
0.4574 25.99 1137 0.8871 0.8030 0.7366
0.4618 26.99 1181 0.8970 0.8051 0.7294
0.4222 28.0 1225 0.8925 0.8108 0.7267
0.4301 28.98 1268 0.8934 0.8066 0.7339
0.4147 29.49 1290 0.8916 0.8072 0.7357

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2