File size: 17,520 Bytes
2e36228 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import os, torch, numpy, cv2, random, glob, python_speech_features, json, math
from scipy.io import wavfile
from torchvision.transforms import RandomCrop
from operator import itemgetter
from torchvggish import vggish_input, vggish_params, mel_features
def overlap(audio, noiseAudio):
snr = [random.uniform(-5, 5)]
if len(noiseAudio) < len(audio):
shortage = len(audio) - len(noiseAudio)
noiseAudio = numpy.pad(noiseAudio, (0, shortage), 'wrap')
else:
noiseAudio = noiseAudio[:len(audio)]
noiseDB = 10 * numpy.log10(numpy.mean(abs(noiseAudio**2)) + 1e-4)
cleanDB = 10 * numpy.log10(numpy.mean(abs(audio**2)) + 1e-4)
noiseAudio = numpy.sqrt(10**((cleanDB - noiseDB - snr) / 10)) * noiseAudio
audio = audio + noiseAudio
return audio.astype(numpy.int16)
def load_audio(data, dataPath, numFrames, audioAug, audioSet=None):
dataName = data[0]
fps = float(data[2])
audio = audioSet[dataName]
if audioAug == True:
augType = random.randint(0, 1)
if augType == 1:
audio = overlap(dataName, audio, audioSet)
else:
audio = audio
# fps is not always 25, in order to align the visual, we modify the window and step in MFCC extraction process based on fps
audio = python_speech_features.mfcc(audio,
16000,
numcep=13,
winlen=0.025 * 25 / fps,
winstep=0.010 * 25 / fps)
maxAudio = int(numFrames * 4)
if audio.shape[0] < maxAudio:
shortage = maxAudio - audio.shape[0]
audio = numpy.pad(audio, ((0, shortage), (0, 0)), 'wrap')
audio = audio[:int(round(numFrames * 4)), :]
return audio
def load_single_audio(audio, fps, numFrames, audioAug=False):
audio = python_speech_features.mfcc(audio,
16000,
numcep=13,
winlen=0.025 * 25 / fps,
winstep=0.010 * 25 / fps)
maxAudio = int(numFrames * 4)
if audio.shape[0] < maxAudio:
shortage = maxAudio - audio.shape[0]
audio = numpy.pad(audio, ((0, shortage), (0, 0)), 'wrap')
audio = audio[:int(round(numFrames * 4)), :]
return audio
def load_visual(data, dataPath, numFrames, visualAug):
dataName = data[0]
videoName = data[0][:11]
faceFolderPath = os.path.join(dataPath, videoName, dataName)
faceFiles = glob.glob("%s/*.jpg" % faceFolderPath)
sortedFaceFiles = sorted(faceFiles,
key=lambda data: (float(data.split('/')[-1][:-4])),
reverse=False)
faces = []
H = 112
if visualAug == True:
new = int(H * random.uniform(0.7, 1))
x, y = numpy.random.randint(0, H - new), numpy.random.randint(0, H - new)
M = cv2.getRotationMatrix2D((H / 2, H / 2), random.uniform(-15, 15), 1)
augType = random.choice(['orig', 'flip', 'crop', 'rotate'])
else:
augType = 'orig'
for faceFile in sortedFaceFiles[:numFrames]:
face = cv2.imread(faceFile)
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
face = cv2.resize(face, (H, H))
if augType == 'orig':
faces.append(face)
elif augType == 'flip':
faces.append(cv2.flip(face, 1))
elif augType == 'crop':
faces.append(cv2.resize(face[y:y + new, x:x + new], (H, H)))
elif augType == 'rotate':
faces.append(cv2.warpAffine(face, M, (H, H)))
faces = numpy.array(faces)
return faces
def load_label(data, numFrames):
res = []
labels = data[3].replace('[', '').replace(']', '')
labels = labels.split(',')
for label in labels:
res.append(int(label))
res = numpy.array(res[:numFrames])
return res
class train_loader(object):
def __init__(self, cfg, trialFileName, audioPath, visualPath, num_speakers):
self.cfg = cfg
self.audioPath = audioPath
self.visualPath = visualPath
self.candidate_speakers = num_speakers
self.path = os.path.join(cfg.DATA.dataPathAVA, "csv")
self.entity_data = json.load(open(os.path.join(self.path, 'train_entity.json')))
self.ts_to_entity = json.load(open(os.path.join(self.path, 'train_ts.json')))
self.mixLst = open(trialFileName).read().splitlines()
self.list_length = len(self.mixLst)
random.shuffle(self.mixLst)
def load_single_audio(self, audio, fps, numFrames, audioAug=False, aug_audio=None):
if audioAug:
augType = random.randint(0, 1)
if augType == 1:
audio = overlap(audio, aug_audio)
else:
audio = audio
res = vggish_input.waveform_to_examples(audio, 16000, numFrames, fps, return_tensor=False)
return res
def load_visual_label_mask(self, videoName, entityName, target_ts, context_ts, visualAug=True):
faceFolderPath = os.path.join(self.visualPath, videoName, entityName)
faces = []
H = 112
if visualAug == True:
new = int(H * random.uniform(0.7, 1))
x, y = numpy.random.randint(0, H - new), numpy.random.randint(0, H - new)
M = cv2.getRotationMatrix2D((H / 2, H / 2), random.uniform(-15, 15), 1)
augType = random.choice(['orig', 'flip', 'crop', 'rotate'])
else:
augType = 'orig'
labels_dict = self.entity_data[videoName][entityName]
labels = numpy.zeros(len(target_ts))
mask = numpy.zeros(len(target_ts))
for i, time in enumerate(target_ts):
if time not in context_ts:
faces.append(numpy.zeros((H, H)))
else:
labels[i] = labels_dict[time]
mask[i] = 1
time = "%.2f" % float(time)
faceFile = os.path.join(faceFolderPath, str(time) + '.jpg')
face = cv2.imread(faceFile)
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
face = cv2.resize(face, (H, H))
if augType == 'orig':
faces.append(face)
elif augType == 'flip':
faces.append(cv2.flip(face, 1))
elif augType == 'crop':
faces.append(cv2.resize(face[y:y + new, x:x + new], (H, H)))
elif augType == 'rotate':
faces.append(cv2.warpAffine(face, M, (H, H)))
faces = numpy.array(faces)
return faces, labels, mask
def get_speaker_context(self, videoName, target_entity, all_ts, center_ts):
context_speakers = list(self.ts_to_entity[videoName][center_ts])
context = {}
chosen_speakers = []
context[target_entity] = all_ts
context_speakers.remove(target_entity)
num_frames = len(all_ts)
for candidate in context_speakers:
candidate_ts = self.entity_data[videoName][candidate]
shared_ts = set(all_ts).intersection(set(candidate_ts))
if (len(shared_ts) > (num_frames / 2)):
context[candidate] = shared_ts
chosen_speakers.append(candidate)
context_speakers = chosen_speakers
random.shuffle(context_speakers)
if not context_speakers:
context_speakers.insert(0, target_entity) # make sure is at 0
while len(context_speakers) < self.candidate_speakers:
context_speakers.append(random.choice(context_speakers))
elif len(context_speakers) < self.candidate_speakers:
context_speakers.insert(0, target_entity) # make sure is at 0
while len(context_speakers) < self.candidate_speakers:
context_speakers.append(random.choice(context_speakers[1:]))
else:
context_speakers.insert(0, target_entity) # make sure is at 0
context_speakers = context_speakers[:self.candidate_speakers]
assert set(context_speakers).issubset(set(list(context.keys()))), target_entity
assert target_entity in context_speakers, target_entity
return context_speakers, context
def __getitem__(self, index):
target_video = self.mixLst[index]
data = target_video.split('\t')
fps = float(data[2])
videoName = data[0][:11]
target_entity = data[0]
all_ts = list(self.entity_data[videoName][target_entity].keys())
numFrames = int(data[1])
assert numFrames == len(all_ts)
center_ts = all_ts[math.floor(numFrames / 2)]
# get context speakers which have more than half time overlapped with target speaker
context_speakers, context = self.get_speaker_context(videoName, target_entity, all_ts,
center_ts)
if self.cfg.TRAIN.AUDIO_AUG:
other_indices = list(range(0, index)) + list(range(index + 1, self.list_length))
augment_entity = self.mixLst[random.choice(other_indices)]
augment_data = augment_entity.split('\t')
augment_entity = augment_data[0]
augment_videoname = augment_data[0][:11]
aug_sr, aug_audio = wavfile.read(
os.path.join(self.audioPath, augment_videoname, augment_entity + '.wav'))
else:
aug_audio = None
audio_path = os.path.join(self.audioPath, videoName, target_entity + '.wav')
sr, audio = wavfile.read(os.path.join(self.audioPath, videoName, target_entity + '.wav'))
audio = self.load_single_audio(audio,
fps,
numFrames,
audioAug=self.cfg.TRAIN.AUDIO_AUG,
aug_audio=aug_audio)
visualFeatures, labels, masks = [], [], []
# target_label = list(self.entity_data[videoName][target_entity].values())
visual, target_labels, target_masks = self.load_visual_label_mask(
videoName, target_entity, all_ts, all_ts)
for idx, context_entity in enumerate(context_speakers):
if context_entity == target_entity:
label = target_labels
visualfeat = visual
mask = target_masks
else:
visualfeat, label, mask = self.load_visual_label_mask(videoName, context_entity,
all_ts,
context[context_entity])
visualFeatures.append(visualfeat)
labels.append(label)
masks.append(mask)
audio = torch.FloatTensor(audio)[None, :, :]
visualFeatures = torch.FloatTensor(numpy.array(visualFeatures))
audio_t = audio.shape[1]
video_t = visualFeatures.shape[1]
if audio_t != video_t * 4:
print(visualFeatures.shape, audio.shape, videoName, target_entity, numFrames)
labels = torch.LongTensor(numpy.array(labels))
masks = torch.LongTensor(numpy.array(masks))
print(audio.shape)
return audio, visualFeatures, labels, masks
def __len__(self):
return len(self.mixLst)
class val_loader(object):
def __init__(self, cfg, trialFileName, audioPath, visualPath, num_speakers):
self.cfg = cfg
self.audioPath = audioPath
self.visualPath = visualPath
self.candidate_speakers = num_speakers
self.path = os.path.join(cfg.DATA.dataPathAVA, "csv")
self.entity_data = json.load(open(os.path.join(self.path, 'val_entity.json')))
self.ts_to_entity = json.load(open(os.path.join(self.path, 'val_ts.json')))
self.mixLst = open(trialFileName).read().splitlines()
def load_single_audio(self, audio, fps, numFrames, audioAug=False, aug_audio=None):
res = vggish_input.waveform_to_examples(audio, 16000, numFrames, fps, return_tensor=False)
return res
def load_visual_label_mask(self, videoName, entityName, target_ts, context_ts):
faceFolderPath = os.path.join(self.visualPath, videoName, entityName)
faces = []
H = 112
labels_dict = self.entity_data[videoName][entityName]
labels = numpy.zeros(len(target_ts))
mask = numpy.zeros(len(target_ts))
for i, time in enumerate(target_ts):
if time not in context_ts:
faces.append(numpy.zeros((H, H)))
else:
labels[i] = labels_dict[time]
mask[i] = 1
time = "%.2f" % float(time)
faceFile = os.path.join(faceFolderPath, str(time) + '.jpg')
face = cv2.imread(faceFile)
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
face = cv2.resize(face, (H, H))
faces.append(face)
faces = numpy.array(faces)
return faces, labels, mask
def get_speaker_context(self, videoName, target_entity, all_ts, center_ts):
context_speakers = list(self.ts_to_entity[videoName][center_ts])
context = {}
chosen_speakers = []
context[target_entity] = all_ts
context_speakers.remove(target_entity)
num_frames = len(all_ts)
for candidate in context_speakers:
candidate_ts = self.entity_data[videoName][candidate]
shared_ts = set(all_ts).intersection(set(candidate_ts))
context[candidate] = shared_ts
chosen_speakers.append(candidate)
# if (len(shared_ts) > (num_frames / 2)):
# context[candidate] = shared_ts
# chosen_speakers.append(candidate)
context_speakers = chosen_speakers
random.shuffle(context_speakers)
if not context_speakers:
context_speakers.insert(0, target_entity) # make sure is at 0
while len(context_speakers) < self.candidate_speakers:
context_speakers.append(random.choice(context_speakers))
elif len(context_speakers) < self.candidate_speakers:
context_speakers.insert(0, target_entity) # make sure is at 0
while len(context_speakers) < self.candidate_speakers:
context_speakers.append(random.choice(context_speakers[1:]))
else:
context_speakers.insert(0, target_entity) # make sure is at 0
context_speakers = context_speakers[:self.candidate_speakers]
assert set(context_speakers).issubset(set(list(context.keys()))), target_entity
return context_speakers, context
def __getitem__(self, index):
target_video = self.mixLst[index]
data = target_video.split('\t')
fps = float(data[2])
videoName = data[0][:11]
target_entity = data[0]
all_ts = list(self.entity_data[videoName][target_entity].keys())
numFrames = int(data[1])
# print(numFrames, len(all_ts))
assert numFrames == len(all_ts)
center_ts = all_ts[math.floor(numFrames / 2)]
# get context speakers which have more than half time overlapped with target speaker
context_speakers, context = self.get_speaker_context(videoName, target_entity, all_ts,
center_ts)
sr, audio = wavfile.read(os.path.join(self.audioPath, videoName, target_entity + '.wav'))
audio = self.load_single_audio(audio, fps, numFrames, audioAug=False)
visualFeatures, labels, masks = [], [], []
# target_label = list(self.entity_data[videoName][target_entity].values())
target_visual, target_labels, target_masks = self.load_visual_label_mask(
videoName, target_entity, all_ts, all_ts)
for idx, context_entity in enumerate(context_speakers):
if context_entity == target_entity:
label = target_labels
visualfeat = target_visual
mask = target_masks
else:
visualfeat, label, mask = self.load_visual_label_mask(videoName, context_entity,
all_ts,
context[context_entity])
visualFeatures.append(visualfeat)
labels.append(label)
masks.append(mask)
audio = torch.FloatTensor(audio)[None, :, :]
visualFeatures = torch.FloatTensor(numpy.array(visualFeatures))
audio_t = audio.shape[1]
video_t = visualFeatures.shape[1]
if audio_t != video_t * 4:
print(visualFeatures.shape, audio.shape, videoName, target_entity, numFrames)
labels = torch.LongTensor(numpy.array(labels))
masks = torch.LongTensor(numpy.array(masks))
return audio, visualFeatures, labels, masks
def __len__(self):
return len(self.mixLst)
|