File size: 13,717 Bytes
0116b77
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ae3211d09d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ae3211d0a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ae3211d0af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ae3211d0b80>", "_build": "<function ActorCriticPolicy._build at 0x7ae3211d0c10>", "forward": "<function ActorCriticPolicy.forward at 0x7ae3211d0ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ae3211d0d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ae3211d0dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ae3211d0e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ae3211d0ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ae3211d0f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ae3211d1000>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ae3211ca980>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691659568887303371, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAALOlUT2IMgE/w/ZpvX4unr7WAR88BbcpPQAAAAAAAAAAMwOevDkltz+eYPC+y3A5PhWOHTwtFFq8AAAAAAAAAADAxw6+zK2kP5S4F79QZP6+WQH+vQKuPL4AAAAAAAAAAO2yA76u//Y5HGSrPaKa07sF87W9CFUMvQAAgD8AAIA/TZI0PV/OCT7+TS091UJxvvvFNz1lv1A9AAAAAAAAAAC6mCG+FAavPlYbFj0Zi1e+IkuVOx0GDTwAAAAAAAAAAEbubz5HTCI/ZdGCPX+swL4kXRo+ZMequgAAAAAAAAAAw0fBvlOnWj9a+pK+tfewvgyWjb5Ci9A9AAAAAAAAAACaa5Y8urQvP6LF9r35IMS+ip37OzYWl7wAAAAAAAAAABW0kr5MxrM+ei0TPj87aL6SPoS8BLIaPAAAAAAAAAAAc8XTPVxfAbr9DpC5xpRZtB+WgLv+wKg4AAAAAAAAgD+ma5A9XA9FumEJvr13fai2+oaGuwtAFzYAAAAAAAAAAG3BKb4zVRU/i9N6vZnFjr5hMlS92IXwPAAAAAAAAAAAgGOCPfY6MT8EeLg82yyzvq4wAD0hr5G9AAAAAAAAAADgNpE+i0PAPTLcD75q0IK+smt7PW54rrsAAAAAAAAAAMA5DT7sILc/jWviPo97t74vLy8+ltokPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHEo40EX+ESMAWyUTYIBjAF0lEdAmqgdCE6DG3V9lChoBkdAbfbUtI0652gHTRACaAhHQJqoYWLxZuB1fZQoaAZHQHEZ3tKIznBoB00dAWgIR0CaqW0q6OHWdX2UKGgGR0BCp9vbXYlIaAdLz2gIR0CaqfMxoIv8dX2UKGgGR0BvhfBi1AqvaAdL/WgIR0Caqjo3rD64dX2UKGgGR0BujN5WzWwvaAdNSAFoCEdAmqrps0pEyHV9lChoBkdAXkRuyeI2wWgHTegDaAhHQJqsov+OwPl1fZQoaAZHQHFRIzJp35hoB03DAWgIR0CbBo/mDDjzdX2UKGgGR0Bw0MO3DvVmaAdNCQFoCEdAmwafO2RaHXV9lChoBkdAa4PKhcqvvGgHTSkBaAhHQJsHPHktEoh1fZQoaAZHQG+A9tdiUgVoB00GAWgIR0CbB2Mb3oLYdX2UKGgGR0BvtcpLEk0KaAdNAwFoCEdAmwfRqwhW53V9lChoBkdAbZLJxvNu+GgHTQABaAhHQJsIgpc5bQl1fZQoaAZHQHC4V5nlGPRoB00XAWgIR0CbCcNH6MzedX2UKGgGR0BsRbf3vhIfaAdNCAFoCEdAmwpUGqxTsXV9lChoBkdAckMjVhCtzWgHTTABaAhHQJsMheiSJTF1fZQoaAZHQHBnIOlO45NoB00ZAWgIR0CbDNxcmjTKdX2UKGgGR0Bwt+WVu76IaAdL+WgIR0CbDdoH9m6HdX2UKGgGR0BwAgdMj/uLaAdL8GgIR0CbELzZpSJkdX2UKGgGR0Bv6CDK5kLAaAdL9WgIR0CbEOeD3/PxdX2UKGgGR0BzLRdC3PRiaAdL92gIR0CbEf3dbgTAdX2UKGgGR0ByBD9GZuyeaAdL6WgIR0CbEiY1YQrddX2UKGgGR0AyRidrftQbaAdL22gIR0CbFFEBKcurdX2UKGgGR0Bs6GBMBZIQaAdNGAFoCEdAmxWxLwnYx3V9lChoBkdAb9ekE9t/F2gHS+xoCEdAmxYmrn1WbXV9lChoBkdAcPSSOinHemgHS+ZoCEdAmxjoDDCP63V9lChoBkdAb+PpblijL2gHS/BoCEdAmxnNiYsunXV9lChoBkdAcCyg1FYuCmgHS/loCEdAmx69bLU1AXV9lChoBkdAcfGm0mdAgWgHTQABaAhHQJsgft5UtI11fZQoaAZHQGzyDJ+2E01oB00oAWgIR0CbIXXKKYRedX2UKGgGR0BwBCAlOXVtaAdL8mgIR0CbIjOaOPvKdX2UKGgGR0Bhs6cNH6MzaAdN6ANoCEdAmyNmFi8WbnV9lChoBkdAcZ7mO2iL22gHTQsBaAhHQJskrwF1SwZ1fZQoaAZHQGKY5IxxkupoB03oA2gIR0CbJLpCa7VbdX2UKGgGR0Bw7PD50r9VaAdL42gIR0CbJZ3fyf+TdX2UKGgGR0Btf2wJPZZkaAdNCQFoCEdAmyZwizLOiXV9lChoBkdAbdRAD7qIJ2gHTUIBaAhHQJsmcQ6IWP91fZQoaAZHQFavwUg0TDhoB03oA2gIR0CbJv/QBxPwdX2UKGgGR0Btd8jkdV/+aAdL/GgIR0CbKgZpSJj2dX2UKGgGR0BwFr9DQZ4waAdL8WgIR0CbKxkcS5AhdX2UKGgGR0BhhJMWXTmXaAdN6ANoCEdAmywRsQ/X5HV9lChoBkdAcbjbgTAWSGgHS/poCEdAmy5icbzbvnV9lChoBkdAZFBnpSrHVGgHTegDaAhHQJsulg/keZJ1fZQoaAZHQHB7dHQQcxVoB00OAWgIR0CbLyLdvbXZdX2UKGgGR0BweuKTB68haAdNTgFoCEdAmy9Zq7Ack3V9lChoBkdAcQb+MqBmPGgHS/xoCEdAmzAbypaRp3V9lChoBkdAcwxHfMwDeWgHTcUBaAhHQJsybwF1SwZ1fZQoaAZHQHFyfyPMjeNoB01jAWgIR0CbM+P/aQFLdX2UKGgGR0BQriVSn+AFaAdL12gIR0CbNCP7el9CdX2UKGgGR0Bis+XHBDXwaAdN6ANoCEdAmzQ4QvpQlHV9lChoBkdAcKp1cdHUdGgHTRYBaAhHQJs0OGahHsl1fZQoaAZHQG9OBHCoCMhoB00GAWgIR0CbN+FUyYXwdX2UKGgGR0ByUH7WNFSbaAdL92gIR0CbOAYNiH6/dX2UKGgGR0ByKW4nWrfcaAdNEQFoCEdAmzh15v99+nV9lChoBkdAcYdtZmqYJGgHTXQBaAhHQJs4ziyY5T91fZQoaAZHQHCqFjNIK+loB00LAWgIR0CbOQBtUGVzdX2UKGgGR0Bh7j876pHaaAdN6ANoCEdAmzoinHeaa3V9lChoBkdAbnNXhfjS5WgHS/BoCEdAmzr4/NZ/1HV9lChoBkdAYcjRTjvNNmgHTegDaAhHQJs834QBgeB1fZQoaAZHQG/+fthNM49oB00DAWgIR0CbPT3iJfpmdX2UKGgGR0Bvcv9vS+g2aAdNFgFoCEdAmz21yR0U5HV9lChoBkdAbkCZUkv9L2gHTQ4BaAhHQJs9wBKcurZ1fZQoaAZHQHFZFXFLnLdoB02KAWgIR0CbPhjlgc94dX2UKGgGR0BywIZhrnDBaAdNUgFoCEdAmz/VNpM6BHV9lChoBkdAcSTMefZmI2gHS+ZoCEdAm0CbO7g883V9lChoBkdAcM0p35eqrGgHTQ0BaAhHQJtA6FwkxAV1fZQoaAZHQHAGy2QXAM5oB00PAWgIR0CbQcajN6gNdX2UKGgGR0BsYSZtvXK9aAdNQQFoCEdAm0MoVVPva3V9lChoBkdAcFMO/tY0VWgHTU4BaAhHQJtDNXV9Wp91fZQoaAZHQHLhVO9FnZloB00SAWgIR0CbQzO3DvVmdX2UKGgGR0Bto4MOPNmlaAdL+mgIR0CbQ0HRCx/vdX2UKGgGR0Bvae5+YtxuaAdL7mgIR0CbROrT6SDAdX2UKGgGR0Bw00CA+Y+jaAdNBwFoCEdAm0Y8bBGhEnV9lChoBkdAcMTm1YyO72gHTQwBaAhHQJtGcu01IiF1fZQoaAZHQHFy3wob4rVoB00AAWgIR0CbRnN1yNn5dX2UKGgGR0Bx4qZpi7TVaAdNMwFoCEdAm0bijQAuI3V9lChoBkdAWUQlOXVslGgHTegDaAhHQJtHDFNtZV51fZQoaAZHQGH85uAI6bRoB03oA2gIR0CbSLx5s0pFdX2UKGgGR0Bus7L8rI5paAdL+WgIR0CbSO4L1EmZdX2UKGgGR0Bteo2/BWPtaAdNMQFoCEdAm0mh9PUKA3V9lChoBkdAYkuKlYU342gHTegDaAhHQJtKARaouPF1fZQoaAZHQHJYY371qWVoB00OAWgIR0CbSpA+pwS8dX2UKGgGR0ByM1n/T9bYaAdL5mgIR0CbSrollbu/dX2UKGgGR0ByoNawD/2kaAdNVgFoCEdAm0vgQ6IWQHV9lChoBkdAbWLSgGr0a2gHTQ8BaAhHQJtMJxEORT11fZQoaAZHQHAI8DOkcjtoB00FAWgIR0CbTefWtlqbdX2UKGgGR0Bvx9A9mpVCaAdL72gIR0CbTsqtYB/7dX2UKGgGR0BuwWwLVnVYaAdL72gIR0CbT2WeHzpYdX2UKGgGR0Bx6RaSs8xLaAdNdgFoCEdAm1A/T9bX6XV9lChoBkdAa+KdIXj2jGgHTSEBaAhHQJtQ6x8lXzV1fZQoaAZHQHCNsAWBSUFoB00TAWgIR0CbUTNUfgaWdX2UKGgGR0BwgZYJVsDXaAdL/WgIR0CbUu6gM+eOdX2UKGgGR0BxQ2SFGoaUaAdNEAFoCEdAm1OOMqBmPHV9lChoBkdAcAZdj5Kvm2gHS+1oCEdAm1O+3MINVnV9lChoBkdAcYjb3Gn4wmgHS+loCEdAm1RtOZb6g3V9lChoBkdAcawTLns9jmgHTQgBaAhHQJtUihoM8YB1fZQoaAZHQHEsEDQqqfhoB017AWgIR0CbVLbg0j1PdX2UKGgGR0Bwobm4iHIqaAdNGgFoCEdAm1ZfzreImHV9lChoBkdAbfFJCBwuNGgHS/5oCEdAm1a6Z+hGpnV9lChoBkdAb+Ga2nbZe2gHTQkBaAhHQJtXdmukk8l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}