File size: 7,323 Bytes
745a794 913a887 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# pip install -q rfdetr==1.2.1 supervision==0.26.1
# RF-DETR video processing for threat detection.
# Inference time depends on frame resolution (e.g., ~50 ms/frame on GPU for 640×640).
import numpy as np
import supervision as sv
import torch
import requests
from PIL import Image
import os
import cv2
from tqdm import tqdm
import time
from rfdetr import RFDETRNano
THREAT_CLASSES = {
1: "Gun",
2: "Explosive",
3: "Grenade",
4: "Knife"
}
# Enable GPU if available
if torch.cuda.is_available():
print(f"GPU: {torch.cuda.get_device_name(0)}")
# print(f"CUDA Version: {torch.version.cuda}")
# print(f"Available GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.1f} GB")
# Optimize for batch processing
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
else:
print("CUDA not available, using CPU")
# Configuration
INPUT_VIDEO = "test_video.mp4"
base, ext = os.path.splitext(INPUT_VIDEO)
OUTPUT_VIDEO = f"{base}_detr{ext}"
THRESHOLD = 0.5
BATCH_SIZE = 32
# Auto-adjust batch size based on GPU memory
if torch.cuda.is_available():
gpu_memory_gb = torch.cuda.get_device_properties(0).total_memory / 1024**3
print(f"Using batch size: {BATCH_SIZE}")
# Download weights
weights_url = "https://huggingface.co/Subh775/Threat-Detection-RFDETR/resolve/main/checkpoint_best_total.pth"
weights_filename = "checkpoint_best_total.pth"
if not os.path.exists(weights_filename):
print(f"Downloading weights from {weights_url}")
response = requests.get(weights_url, stream=True)
response.raise_for_status()
with open(weights_filename, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print("Download complete.")
print("Loading model...")
model = RFDETRNano(resolution=640, pretrain_weights=weights_filename)
model.optimize_for_inference()
# Setup annotators
color = sv.ColorPalette.from_hex([
"#1E90FF", "#32CD32", "#FF0000", "#FF8C00"
])
bbox_annotator = sv.BoxAnnotator(color=color, thickness=3)
label_annotator = sv.LabelAnnotator(
color=color,
text_color=sv.Color.BLACK,
text_scale=1.0,
text_thickness=2,
smart_position=True
)
def process_frame_batch(frames):
"""Process a batch of frames for better GPU utilization"""
batch_results = []
# Convert all frames to PIL images
pil_images = []
for frame in frames:
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(rgb_frame)
pil_images.append(pil_image)
# Process each image in the batch (RF-DETR processes them efficiently)
batch_detections = []
for pil_image in pil_images:
detections = model.predict(pil_image, threshold=THRESHOLD)
batch_detections.append(detections)
# Annotate all images in the batch
annotated_frames = []
for pil_image, detections in zip(pil_images, batch_detections):
# Create labels
labels = []
for class_id, confidence in zip(detections.class_id, detections.confidence):
class_name = THREAT_CLASSES.get(class_id, f"unknown_class_{class_id}")
labels.append(f"{class_name} {confidence:.2f}")
# Annotate
annotated_pil = pil_image.copy()
annotated_pil = bbox_annotator.annotate(annotated_pil, detections)
annotated_pil = label_annotator.annotate(annotated_pil, detections, labels)
# Convert back to BGR
annotated_frame = cv2.cvtColor(np.array(annotated_pil), cv2.COLOR_RGB2BGR)
annotated_frames.append(annotated_frame)
return annotated_frames, batch_detections
# Open video
cap = cv2.VideoCapture(INPUT_VIDEO)
if not cap.isOpened():
print(f"Error: Could not open video file {INPUT_VIDEO}")
exit()
# Get video properties
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"Video: {width}x{height}, {fps} FPS, {total_frames} frames")
print(f"Processing in batches of {BATCH_SIZE} frames")
# Setup video writer
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(OUTPUT_VIDEO, fourcc, fps, (width, height))
# Batch processing
print("Processing video with batch inference...")
frame_buffer = []
total_detections = 0
processed_frames = 0
processing_times = []
with tqdm(total=total_frames, desc="Batch processing") as pbar:
while True:
ret, frame = cap.read()
if not ret:
# Process remaining frames in buffer
if frame_buffer:
start_time = time.time()
annotated_frames, batch_detections = process_frame_batch(frame_buffer)
processing_time = time.time() - start_time
processing_times.append(processing_time)
# Write remaining frames
for annotated_frame, detections in zip(annotated_frames, batch_detections):
out.write(annotated_frame)
total_detections += len(detections)
processed_frames += len(frame_buffer)
pbar.update(len(frame_buffer))
break
# Add frame to buffer
frame_buffer.append(frame)
# Process when buffer is full
if len(frame_buffer) >= BATCH_SIZE:
start_time = time.time()
# Process batch
annotated_frames, batch_detections = process_frame_batch(frame_buffer)
processing_time = time.time() - start_time
processing_times.append(processing_time)
# Write frames
batch_threats = 0
for annotated_frame, detections in zip(annotated_frames, batch_detections):
out.write(annotated_frame)
batch_threats += len(detections)
total_detections += len(detections)
processed_frames += len(frame_buffer)
# Update progress
batch_fps = len(frame_buffer) / processing_time if processing_time > 0 else 0
pbar.set_postfix({
'Batch FPS': f"{batch_fps:.1f}",
'Threats': batch_threats,
'Total': total_detections
})
pbar.update(len(frame_buffer))
# Clear buffer
frame_buffer = []
# Clear GPU cache every 10 batches
if torch.cuda.is_available() and processed_frames % (BATCH_SIZE * 10) == 0:
torch.cuda.empty_cache()
# Cleanup
cap.release()
out.release()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Performance summary
total_time = sum(processing_times)
avg_fps = processed_frames / total_time if total_time > 0 else 0
speedup = avg_fps / fps if fps > 0 else 0
print(f"Output: {OUTPUT_VIDEO}")
print(f"Stats:")
print(f" • Processed: {processed_frames} frames")
print(f" • Detections: {total_detections}")
print(f" • Batch size: {BATCH_SIZE}")
print(f" • Average speed: {avg_fps:.1f} FPS")
print(f" • Speedup: {speedup:.1f}x real-time")
print(f" • Processing time: {total_time:.1f}s") |