File size: 26,325 Bytes
baa8e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
#---------------------------------------------------------------------------------------------------------------------#
# Comfyroll Custom Nodes by RockOfFire and Akatsuzi       https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes
# for ComfyUI                                             https://github.com/comfyanonymous/ComfyUI
#---------------------------------------------------------------------------------------------------------------------#

import torch
import numpy as np
import os
import sys
import io
import comfy.sd
from PIL import Image
from PIL.PngImagePlugin import PngInfo
import json
import folder_paths
import typing as tg
import random
from .graphics_functions import random_hex_color, random_rgb
from ..categories import icons

sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))

#---------------------------------------------------------------------------------------------------------------------#
# Aspect Ratio Nodes
#---------------------------------------------------------------------------------------------------------------------#
class CR_AspectRatioSD15:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
    
        aspect_ratios = ["custom",
                         "1:1 square 512x512",
                         "1:1 square 1024x1024",
                         "2:3 portrait 512x768",
                         "3:4 portrait 512x682",
                         "3:2 landscape 768x512",
                         "4:3 landscape 682x512",
                         "16:9 cinema 910x512",
                         "1.85:1 cinema 952x512",
                         "2:1 cinema 1024x512",
                         "2.39:1 anamorphic 1224x512"]
               
        return {
            "required": {
                "width": ("INT", {"default": 512, "min": 64, "max": 8192}),
                "height": ("INT", {"default": 512, "min": 64, "max": 8192}),
                "aspect_ratio": (aspect_ratios,),
                "swap_dimensions": (["Off", "On"],),
                "upscale_factor": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 100.0, "step":0.1}),
                "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})
            }
        }
    RETURN_TYPES = ("INT", "INT", "FLOAT", "INT", "LATENT", "STRING", )
    RETURN_NAMES = ("width", "height", "upscale_factor", "batch_size", "empty_latent", "show_help", )
    FUNCTION = "Aspect_Ratio"
    CATEGORY = icons.get("Comfyroll/Aspect Ratio")

    def Aspect_Ratio(self, width, height, aspect_ratio, swap_dimensions, upscale_factor, batch_size):
        if aspect_ratio == "2:3 portrait 512x768":
            width, height = 512, 768
        elif aspect_ratio == "3:2 landscape 768x512":
            width, height = 768, 512
        elif aspect_ratio == "1:1 square 512x512":
            width, height = 512, 512
        elif aspect_ratio == "1:1 square 1024x1024":
            width, height = 1024, 1024
        elif aspect_ratio == "16:9 cinema 910x512":
            width, height = 910, 512
        elif aspect_ratio == "3:4 portrait 512x682":
            width, height = 512, 682
        elif aspect_ratio == "4:3 landscape 682x512":
            width, height = 682, 512
        elif aspect_ratio == "1.85:1 cinema 952x512":            
            width, height = 952, 512
        elif aspect_ratio == "2:1 cinema 1024x512":
            width, height = 1024, 512
        elif aspect_ratio == "2.39:1 anamorphic 1224x512":
            width, height = 1224, 512

        if swap_dimensions == "On":
            width, height = height, width
           
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])

        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Aspect-Ratio-Nodes#cr-sd15-aspect-ratio"
           
        return(width, height, upscale_factor, batch_size, {"samples":latent}, show_help, )   

#---------------------------------------------------------------------------------------------------------------------#
class CR_SDXLAspectRatio:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
    
        aspect_ratios = ["custom",
                                  "1:1 square 1024x1024",
                                  "3:4 portrait 896x1152",
                                  "5:8 portrait 832x1216",
                                  "9:16 portrait 768x1344",
                                  "9:21 portrait 640x1536",
                                  "4:3 landscape 1152x896",
                                  "3:2 landscape 1216x832",
                                  "16:9 landscape 1344x768",
                                  "21:9 landscape 1536x640"]
        
        return {
            "required": {
                "width": ("INT", {"default": 1024, "min": 64, "max": 8192}),
                "height": ("INT", {"default": 1024, "min": 64, "max": 8192}),
                "aspect_ratio": (aspect_ratios,),
                "swap_dimensions": (["Off", "On"],),
                "upscale_factor": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 100.0, "step":0.1}),
                "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})
            }
        }
    RETURN_TYPES = ("INT", "INT", "FLOAT", "INT", "LATENT", "STRING", )
    RETURN_NAMES = ("width", "height", "upscale_factor", "batch_size", "empty_latent", "show_help", )
    FUNCTION = "Aspect_Ratio"
    CATEGORY = icons.get("Comfyroll/Aspect Ratio")

    def Aspect_Ratio(self, width, height, aspect_ratio, swap_dimensions, upscale_factor, batch_size):
        if aspect_ratio == "1:1 square 1024x1024":
            width, height = 1024, 1024
        elif aspect_ratio == "3:4 portrait 896x1152":
            width, height = 896, 1152
        elif aspect_ratio == "5:8 portrait 832x1216":
            width, height = 832, 1216
        elif aspect_ratio == "9:16 portrait 768x1344":
            width, height = 768, 1344
        elif aspect_ratio == "9:21 portrait 640x1536":
            width, height = 640, 1536
        elif aspect_ratio == "4:3 landscape 1152x896":
            width, height = 1152, 896
        elif aspect_ratio == "3:2 landscape 1216x832":
            width, height = 1216, 832
        elif aspect_ratio == "16:9 landscape 1344x768":
            width, height = 1344, 768
        elif aspect_ratio == "21:9 landscape 1536x640":
            width, height = 1536, 640

        if swap_dimensions == "On":
            width, height = height, width
             
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])

        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Aspect-Ratio-Nodes#cr-sdxl-aspect-ratio"
           
        return(width, height, upscale_factor, batch_size, {"samples":latent}, show_help, )  

#---------------------------------------------------------------------------------------------------------------------#
class CR_AspectRatio:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
    
        aspect_ratios = ["custom",
                         "SD1.5 - 1:1 square 512x512",
                         "SD1.5 - 2:3 portrait 512x768",
                         "SD1.5 - 3:4 portrait 512x682",
                         "SD1.5 - 3:2 landscape 768x512",
                         "SD1.5 - 4:3 landscape 682x512",
                         "SD1.5 - 16:9 cinema 910x512",
                         "SD1.5 - 1.85:1 cinema 952x512",
                         "SD1.5 - 2:1 cinema 1024x512",
                         "SDXL - 1:1 square 1024x1024",
                         "SDXL - 3:4 portrait 896x1152",
                         "SDXL - 5:8 portrait 832x1216",
                         "SDXL - 9:16 portrait 768x1344",
                         "SDXL - 9:21 portrait 640x1536",
                         "SDXL - 4:3 landscape 1152x896",
                         "SDXL - 3:2 landscape 1216x832",
                         "SDXL - 16:9 landscape 1344x768",
                         "SDXL - 21:9 landscape 1536x640"]
               
        return {
            "required": {
                "width": ("INT", {"default": 1024, "min": 64, "max": 8192}),
                "height": ("INT", {"default": 1024, "min": 64, "max": 8192}),
                "aspect_ratio": (aspect_ratios,),
                "swap_dimensions": (["Off", "On"],),
                "upscale_factor": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 100.0, "step":0.1}),
                "prescale_factor": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 100.0, "step":0.1}),
                "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})
            }
        }
    RETURN_TYPES = ("INT", "INT", "FLOAT", "FLOAT", "INT", "LATENT", "STRING", )
    RETURN_NAMES = ("width", "height", "upscale_factor", "prescale_factor", "batch_size", "empty_latent", "show_help", )
    FUNCTION = "Aspect_Ratio"
    CATEGORY = icons.get("Comfyroll/Aspect Ratio")

    def Aspect_Ratio(self, width, height, aspect_ratio, swap_dimensions, upscale_factor, prescale_factor, batch_size):
        
        # SD1.5
        if aspect_ratio == "SD1.5 - 1:1 square 512x512":
            width, height = 512, 512
        elif aspect_ratio == "SD1.5 - 2:3 portrait 512x768":
            width, height = 512, 768
        elif aspect_ratio == "SD1.5 - 16:9 cinema 910x512":
            width, height = 910, 512
        elif aspect_ratio == "SD1.5 - 3:4 portrait 512x682":
            width, height = 512, 682
        elif aspect_ratio == "SD1.5 - 3:2 landscape 768x512":
            width, height = 768, 512    
        elif aspect_ratio == "SD1.5 - 4:3 landscape 682x512":
            width, height = 682, 512
        elif aspect_ratio == "SD1.5 - 1.85:1 cinema 952x512":            
            width, height = 952, 512
        elif aspect_ratio == "SD1.5 - 2:1 cinema 1024x512":
            width, height = 1024, 512
        elif aspect_ratio == "SD1.5 - 2.39:1 anamorphic 1224x512":
            width, height = 1224, 512 
        # SDXL   
        if aspect_ratio == "SDXL - 1:1 square 1024x1024":
            width, height = 1024, 1024
        elif aspect_ratio == "SDXL - 3:4 portrait 896x1152":
            width, height = 896, 1152
        elif aspect_ratio == "SDXL - 5:8 portrait 832x1216":
            width, height = 832, 1216
        elif aspect_ratio == "SDXL - 9:16 portrait 768x1344":
            width, height = 768, 1344
        elif aspect_ratio == "SDXL - 9:21 portrait 640x1536":
            width, height = 640, 1536
        elif aspect_ratio == "SDXL - 4:3 landscape 1152x896":
            width, height = 1152, 896
        elif aspect_ratio == "SDXL - 3:2 landscape 1216x832":
            width, height = 1216, 832
        elif aspect_ratio == "SDXL - 16:9 landscape 1344x768":
            width, height = 1344, 768
        elif aspect_ratio == "SDXL - 21:9 landscape 1536x640":
            width, height = 1536, 640                
        
        if swap_dimensions == "On":
            width, height = height, width
        
        width = int(width*prescale_factor)
        height = int(height*prescale_factor)
        
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])

        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Aspect-Ratio-Nodes#cr-aspect-ratio"
           
        return(width, height, upscale_factor, prescale_factor, batch_size, {"samples":latent}, show_help, )    
#---------------------------------------------------------------------------------------------------------------------#
# Other Nodes
#---------------------------------------------------------------------------------------------------------------------#
class CR_ImageOutput:
    def __init__(self):
        self.output_dir = folder_paths.get_output_directory()
        self.type = "output"

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
                    {"images": ("IMAGE", ),
                    "output_type": (["Preview", "Save"],),
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                "optional": {
                    "trigger": ("BOOLEAN", {"default": False},),}
                }

    RETURN_TYPES = ("BOOLEAN", )
    RETURN_NAMES = ("trigger", )
    FUNCTION = "save_images"
    OUTPUT_NODE = True
    CATEGORY = icons.get("Comfyroll/Other")

    def save_images(self, images, filename_prefix="ComfyUI", trigger = False, output_type = "Preview", prompt=None, extra_pnginfo=None):
        def map_filename(filename):
            prefix_len = len(os.path.basename(filename_prefix))
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)

        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input

        if output_type == "Save":
            self.output_dir = folder_paths.get_output_directory()
            self.type = "output"
        elif output_type == "Preview":
            self.output_dir = folder_paths.get_temp_directory()
            self.type = "temp"

        filename_prefix = compute_vars(filename_prefix)

        subfolder = os.path.dirname(os.path.normpath(filename_prefix))
        filename = os.path.basename(os.path.normpath(filename_prefix))

        full_output_folder = os.path.join(self.output_dir, subfolder)

        if os.path.commonpath((self.output_dir, os.path.abspath(full_output_folder))) != self.output_dir:
            return {}

        try:
            counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_", map(map_filename, os.listdir(full_output_folder))))[0] + 1
        except ValueError:
            counter = 1
        except FileNotFoundError:
            os.makedirs(full_output_folder, exist_ok=True)
            counter = 1

        results = list()
        for image in images:
            i = 255. * image.cpu().numpy()
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))

            file = f"{filename}_{counter:05}_.png"
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
            })
            counter += 1

        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Other-Nodes#cr-image-output"

        return { "ui": { "images": results }, "result": (trigger,) }


#---------------------------------------------------------------------------------------------------------------------#
class CR_IntegerMultipleOf:
    def __init__(self):
        pass
        
    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "integer": ("INT", {"default": 1, "min": -18446744073709551615, "max": 18446744073709551615}),
                "multiple": ("FLOAT", {"default": 8, "min": 1, "max": 18446744073709551615}),
            }
        }
    
    RETURN_TYPES =("INT", "STRING", )
    RETURN_NAMES =("INT", "show_help", )
    FUNCTION = "int_multiple_of"    
    CATEGORY = icons.get("Comfyroll/Other")
    
    def int_multiple_of(self, integer, multiple=8):
        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Other-Nodes#cr-integer-multiple"
        if multiple == 0:
            return (int(integer), show_help, )
        integer = integer * multiple        
        return (int(integer), show_help, )

#---------------------------------------------------------------------------------------------------------------------#
class CR_Seed:
    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff})}}

    RETURN_TYPES = ("INT", "STRING", )
    RETURN_NAMES = ("seed", "show_help", )
    FUNCTION = "seedint"
    OUTPUT_NODE = True
    CATEGORY = icons.get("Comfyroll/Other")

    @staticmethod
    def seedint(seed):
        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Other-Nodes#cr-seed"
        return (seed, show_help,)

#---------------------------------------------------------------------------------------------------------------------#
class CR_LatentBatchSize:

    def __init__(self):
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"latent": ("LATENT", ),
                             "batch_size": ("INT", {"default": 2, "min": 1, "max": 16, "step": 1}),
                            }
               }

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "batchsize"
    CATEGORY = icons.get("Comfyroll/Other")

    def batchsize(self, latent: tg.Sequence[tg.Mapping[tg.Text, torch.Tensor]], batch_size: int):
        samples = latent['samples']
        shape = samples.shape

        sample_list = [samples] + [
            torch.clone(samples) for _ in range(batch_size - 1)
        ]

        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Other-Nodes#cr-latent-batch-size"

        return ({
            'samples': torch.cat(sample_list),
        }, )

#---------------------------------------------------------------------------------------------------------------------#
class CR_PromptText:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"prompt": ("STRING", {"default": "prompt", "multiline": True})}}

    RETURN_TYPES = ("STRING", "STRING", )
    RETURN_NAMES = ("prompt", "show_help", )
    FUNCTION = "get_value"
    CATEGORY = icons.get("Comfyroll/Other")

    def get_value(self, prompt):
        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Other-Nodes#cr-prompt-text"
        return (prompt, show_help, )

#---------------------------------------------------------------------------------------------------------------------#
class CR_SplitString:

    @classmethod
    def INPUT_TYPES(s):  
    
        return {"required": {"text": ("STRING", {"multiline": False, "default": "text"}),
                             "delimiter": ("STRING", {"multiline": False, "default": ","}), 
                }
        }

    RETURN_TYPES = ("STRING", "STRING", "STRING", "STRING", "STRING", )
    RETURN_NAMES = ("string_1", "string_2", "string_3", "string_4", "show_help", )    
    FUNCTION = "split"
    CATEGORY = icons.get("Comfyroll/Other")

    def split(self, text, delimiter):

        # Split the text string
        parts = text.split(delimiter)
        strings = [part.strip() for part in parts[:4]]
        string_1, string_2, string_3, string_4 = strings + [""] * (4 - len(strings))            

        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Other-Nodes#cr-split-string"

        return (string_1, string_2, string_3, string_4, show_help, )

#---------------------------------------------------------------------------------------------------------------------#
class CR_Value:

    @classmethod
    def INPUT_TYPES(s):  
        return {"required": {"value": ("FLOAT", {"default": 1.0,},)}}

    RETURN_TYPES = ("FLOAT", "INT", "STRING", )
    RETURN_NAMES = ("FLOAT", "INT", "show_help", )
    CATEGORY = icons.get("Comfyroll/Other")
    FUNCTION = "get_value"

    def get_value(self, value):
        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Other-Nodes#cr-value"
        return (float(value), int(value), show_help, )

#---------------------------------------------------------------------------------------------------------------------#
class CR_ConditioningMixer:

    @classmethod
    def INPUT_TYPES(s):
    
        mix_methods = ["Combine", "Average", "Concatenate"]
        
        return {"required":
                    {"conditioning_1": ("CONDITIONING", ),
                     "conditioning_2": ("CONDITIONING", ),      
                     "mix_method": (mix_methods, ),
                     "average_strength": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
                    }
               }

    RETURN_TYPES = ("CONDITIONING", "STRING", )
    RETURN_NAMES = ("CONDITIONING", "show_help", )
    FUNCTION = "conditioning"
    CATEGORY = icons.get("Comfyroll/Other")
    
    def conditioning(self, mix_method, conditioning_1, conditioning_2, average_strength):

        conditioning_from = conditioning_1
        conditioning_to = conditioning_2
        conditioning_to_strength = average_strength

        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Other-Nodes#cr-conditioning-mixer"
    
        if mix_method == "Combine":
            return (conditioning_1 + conditioning_2, show_help, )

        if mix_method == "Average":
        
            out = []

            if len(conditioning_from) > 1:
                print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

            cond_from = conditioning_from[0][0]
            pooled_output_from = conditioning_from[0][1].get("pooled_output", None)

            for i in range(len(conditioning_to)):
                t1 = conditioning_to[i][0]
                pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
                t0 = cond_from[:,:t1.shape[1]]
                if t0.shape[1] < t1.shape[1]:
                    t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

                tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
                t_to = conditioning_to[i][1].copy()
                if pooled_output_from is not None and pooled_output_to is not None:
                    t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
                elif pooled_output_from is not None:
                    t_to["pooled_output"] = pooled_output_from

                n = [tw, t_to]
                out.append(n)
            return (out, show_help, )

        if mix_method == "Concatenate":
        
            out = []

            if len(conditioning_from) > 1:
                print("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

            cond_from = conditioning_from[0][0]

            for i in range(len(conditioning_to)):
                t1 = conditioning_to[i][0]
                tw = torch.cat((t1, cond_from),1)
                n = [tw, conditioning_to[i][1].copy()]
                out.append(n)
            return (out, show_help, )
            
#---------------------------------------------------------------------------------------------------------------------#
class CR_SelectModel:
    
    @classmethod
    def INPUT_TYPES(cls):
    
        checkpoint_files = ["None"] + folder_paths.get_filename_list("checkpoints")
        
        return {"required": {"ckpt_name1": (checkpoint_files,),
                             "ckpt_name2": (checkpoint_files,),
                             "ckpt_name3": (checkpoint_files,),
                             "ckpt_name4": (checkpoint_files,),
                             "ckpt_name5": (checkpoint_files,),
                             "select_model": ("INT", {"default": 1, "min": 1, "max": 5}),
                            }    
               }


    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "STRING", "STRING", )
    RETURN_NAMES = ("MODEL", "CLIP", "VAE", "ckpt_name", "show_help", )
    FUNCTION = "select_model"
    CATEGORY = icons.get("Comfyroll/Other")

    def select_model(self, ckpt_name1, ckpt_name2, ckpt_name3, ckpt_name4, ckpt_name5, select_model):
    
        # Initialise the list
        model_list = list()
    
        if select_model == 1:
            model_name = ckpt_name1
        elif select_model == 2:
            model_name = ckpt_name2
        elif select_model == 3:
            model_name = ckpt_name3
        elif select_model == 4:
            model_name = ckpt_name4
        elif select_model == 5:
            model_name = ckpt_name5
            
        if  model_name == "None":
            print(f"CR Select Model: No model selected")
            return()

        ckpt_path = folder_paths.get_full_path("checkpoints", model_name)
        model, clip, vae, clipvision = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True,
                                                     embedding_directory=folder_paths.get_folder_paths("embeddings"))
            
        show_help = "https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/wiki/Other-Nodes#cr-select-model"
            
        return (model, clip, vae, model_name, show_help, )
                   
#---------------------------------------------------------------------------------------------------------------------#
# MAPPINGS
#---------------------------------------------------------------------------------------------------------------------#
# For reference only, actual mappings are in __init__.py
'''
NODE_CLASS_MAPPINGS = {
    ### Aspect ratio
    "CR SD1.5 Aspect Ratio": CR_AspectRatioSD15,
    "CR SDXL Aspect Ratio":CR_SDXLAspectRatio,
    "CR Aspect Ratio": CR_AspectRatio,
    ### Other
    "CR Image Output": CR_ImageOutput,
    "CR Integer Multiple": CR_IntegerMultipleOf,
    "CR Latent Batch Size":CR_LatentBatchSize
    "CR Seed":CR_Seed,
    "CR Prompt Text":CR_PromptText,
    "CR Split String":CR_SplitString,
    "CR Value": CR_Value,
    "CR Conditioning Mixer":CR_ConditioningMixer,
    "CR Select Model": CR_SelectModel,  
}
'''