File size: 35,487 Bytes
baa8e90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 |
from typing import Union
from torch import Tensor
import torch
import comfy.utils
import comfy.controlnet as comfy_cn
from comfy.controlnet import ControlBase, ControlNet, ControlLora, T2IAdapter, broadcast_image_to
def get_properly_arranged_t2i_weights(initial_weights: list[float]):
new_weights = []
new_weights.extend([initial_weights[0]]*3)
new_weights.extend([initial_weights[1]]*3)
new_weights.extend([initial_weights[2]]*3)
new_weights.extend([initial_weights[3]]*3)
return new_weights
class ControlWeightType:
DEFAULT = "default"
UNIVERSAL = "universal"
T2IADAPTER = "t2iadapter"
CONTROLNET = "controlnet"
CONTROLLORA = "controllora"
CONTROLLLLITE = "controllllite"
class ControlWeights:
def __init__(self, weight_type: str, base_multiplier: float=1.0, flip_weights: bool=False, weights: list[float]=None, weight_mask: Tensor=None):
self.weight_type = weight_type
self.base_multiplier = base_multiplier
self.flip_weights = flip_weights
self.weights = weights
if self.weights is not None and self.flip_weights:
self.weights.reverse()
self.weight_mask = weight_mask
def get(self, idx: int) -> Union[float, Tensor]:
# if weights is not none, return index
if self.weights is not None:
return self.weights[idx]
return 1.0
@classmethod
def default(cls):
return cls(ControlWeightType.DEFAULT)
@classmethod
def universal(cls, base_multiplier: float, flip_weights: bool=False):
return cls(ControlWeightType.UNIVERSAL, base_multiplier=base_multiplier, flip_weights=flip_weights)
@classmethod
def universal_mask(cls, weight_mask: Tensor):
return cls(ControlWeightType.UNIVERSAL, weight_mask=weight_mask)
@classmethod
def t2iadapter(cls, weights: list[float]=None, flip_weights: bool=False):
if weights is None:
weights = [1.0]*12
return cls(ControlWeightType.T2IADAPTER, weights=weights,flip_weights=flip_weights)
@classmethod
def controlnet(cls, weights: list[float]=None, flip_weights: bool=False):
if weights is None:
weights = [1.0]*13
return cls(ControlWeightType.CONTROLNET, weights=weights, flip_weights=flip_weights)
@classmethod
def controllora(cls, weights: list[float]=None, flip_weights: bool=False):
if weights is None:
weights = [1.0]*10
return cls(ControlWeightType.CONTROLLORA, weights=weights, flip_weights=flip_weights)
@classmethod
def controllllite(cls, weights: list[float]=None, flip_weights: bool=False):
if weights is None:
# TODO: make this have a real value
weights = [1.0]*200
return cls(ControlWeightType.CONTROLLLLITE, weights=weights, flip_weights=flip_weights)
class StrengthInterpolation:
LINEAR = "linear"
EASE_IN = "ease-in"
EASE_OUT = "ease-out"
EASE_IN_OUT = "ease-in-out"
NONE = "none"
class LatentKeyframe:
def __init__(self, batch_index: int, strength: float) -> None:
self.batch_index = batch_index
self.strength = strength
# always maintain sorted state (by batch_index of LatentKeyframe)
class LatentKeyframeGroup:
def __init__(self) -> None:
self.keyframes: list[LatentKeyframe] = []
def add(self, keyframe: LatentKeyframe) -> None:
added = False
# replace existing keyframe if same batch_index
for i in range(len(self.keyframes)):
if self.keyframes[i].batch_index == keyframe.batch_index:
self.keyframes[i] = keyframe
added = True
break
if not added:
self.keyframes.append(keyframe)
self.keyframes.sort(key=lambda k: k.batch_index)
def get_index(self, index: int) -> Union[LatentKeyframe, None]:
try:
return self.keyframes[index]
except IndexError:
return None
def __getitem__(self, index) -> LatentKeyframe:
return self.keyframes[index]
def is_empty(self) -> bool:
return len(self.keyframes) == 0
def clone(self) -> 'LatentKeyframeGroup':
cloned = LatentKeyframeGroup()
for tk in self.keyframes:
cloned.add(tk)
return cloned
class TimestepKeyframe:
def __init__(self,
start_percent: float = 0.0,
strength: float = 1.0,
interpolation: str = StrengthInterpolation.NONE,
control_weights: ControlWeights = None,
latent_keyframes: LatentKeyframeGroup = None,
null_latent_kf_strength: float = 0.0,
inherit_missing: bool = True,
guarantee_usage: bool = True,
mask_hint_orig: Tensor = None) -> None:
self.start_percent = start_percent
self.start_t = 999999999.9
self.strength = strength
self.interpolation = interpolation
self.control_weights = control_weights
self.latent_keyframes = latent_keyframes
self.null_latent_kf_strength = null_latent_kf_strength
self.inherit_missing = inherit_missing
self.guarantee_usage = guarantee_usage
self.mask_hint_orig = mask_hint_orig
def has_control_weights(self):
return self.control_weights is not None
def has_latent_keyframes(self):
return self.latent_keyframes is not None
def has_mask_hint(self):
return self.mask_hint_orig is not None
@classmethod
def default(cls) -> 'TimestepKeyframe':
return cls(0.0)
# always maintain sorted state (by start_percent of TimestepKeyFrame)
class TimestepKeyframeGroup:
def __init__(self) -> None:
self.keyframes: list[TimestepKeyframe] = []
self.keyframes.append(TimestepKeyframe.default())
def add(self, keyframe: TimestepKeyframe) -> None:
added = False
# replace existing keyframe if same start_percent
for i in range(len(self.keyframes)):
if self.keyframes[i].start_percent == keyframe.start_percent:
self.keyframes[i] = keyframe
added = True
break
if not added:
self.keyframes.append(keyframe)
self.keyframes.sort(key=lambda k: k.start_percent)
def get_index(self, index: int) -> Union[TimestepKeyframe, None]:
try:
return self.keyframes[index]
except IndexError:
return None
def has_index(self, index: int) -> int:
return index >=0 and index < len(self.keyframes)
def __getitem__(self, index) -> TimestepKeyframe:
return self.keyframes[index]
def __len__(self) -> int:
return len(self.keyframes)
def is_empty(self) -> bool:
return len(self.keyframes) == 0
def clone(self) -> 'TimestepKeyframeGroup':
cloned = TimestepKeyframeGroup()
for tk in self.keyframes:
cloned.add(tk)
return cloned
@classmethod
def default(cls, keyframe: TimestepKeyframe) -> 'TimestepKeyframeGroup':
group = cls()
group.keyframes[0] = keyframe
return group
# used to inject ControlNetAdvanced and T2IAdapterAdvanced control_merge function
class AdvancedControlBase:
def __init__(self, base: ControlBase, timestep_keyframes: TimestepKeyframeGroup, weights_default: ControlWeights):
self.base = base
self.compatible_weights = [ControlWeightType.UNIVERSAL]
self.add_compatible_weight(weights_default.weight_type)
# mask for which parts of controlnet output to keep
self.mask_cond_hint_original = None
self.mask_cond_hint = None
self.tk_mask_cond_hint_original = None
self.tk_mask_cond_hint = None
self.weight_mask_cond_hint = None
# actual index values
self.sub_idxs = None
self.full_latent_length = 0
self.context_length = 0
# timesteps
self.t: Tensor = None
self.batched_number: int = None
# weights + override
self.weights: ControlWeights = None
self.weights_default: ControlWeights = weights_default
self.weights_override: ControlWeights = None
# latent keyframe + override
self.latent_keyframes: LatentKeyframeGroup = None
self.latent_keyframe_override: LatentKeyframeGroup = None
# initialize timestep_keyframes
self.set_timestep_keyframes(timestep_keyframes)
# override some functions
self.get_control = self.get_control_inject
self.control_merge = self.control_merge_inject#.__get__(self, type(self))
self.pre_run = self.pre_run_inject
self.cleanup = self.cleanup_inject
def add_compatible_weight(self, control_weight_type: str):
self.compatible_weights.append(control_weight_type)
def verify_all_weights(self, throw_error=True):
# first, check if override exists - if so, only need to check the override
if self.weights_override is not None:
if self.weights_override.weight_type not in self.compatible_weights:
msg = f"Weight override is type {self.weights_override.weight_type}, but loaded {type(self).__name__}" + \
f"only supports {self.compatible_weights} weights."
raise WeightTypeException(msg)
# otherwise, check all timestep keyframe weights
else:
for tk in self.timestep_keyframes.keyframes:
if tk.has_control_weights() and tk.control_weights.weight_type not in self.compatible_weights:
msg = f"Weight on Timestep Keyframe with start_percent={tk.start_percent} is type" + \
f"{tk.control_weights.weight_type}, but loaded {type(self).__name__} only supports {self.compatible_weights} weights."
raise WeightTypeException(msg)
def set_timestep_keyframes(self, timestep_keyframes: TimestepKeyframeGroup):
self.timestep_keyframes = timestep_keyframes if timestep_keyframes else TimestepKeyframeGroup()
# prepare first timestep_keyframe related stuff
self.current_timestep_keyframe = None
self.current_timestep_index = -1
self.next_timestep_keyframe = None
self.weights = None
self.latent_keyframes = None
def prepare_current_timestep(self, t: Tensor, batched_number: int):
self.t = t
self.batched_number = batched_number
# get current step percent
curr_t: float = t[0]
prev_index = self.current_timestep_index
# if has next index, loop through and see if need to switch
if self.timestep_keyframes.has_index(self.current_timestep_index+1):
for i in range(self.current_timestep_index+1, len(self.timestep_keyframes)):
eval_tk = self.timestep_keyframes[i]
# check if start percent is less or equal to curr_t
if eval_tk.start_t >= curr_t:
self.current_timestep_index = i
self.current_timestep_keyframe = eval_tk
# keep track of control weights, latent keyframes, and masks,
# accounting for inherit_missing
if self.current_timestep_keyframe.has_control_weights():
self.weights = self.current_timestep_keyframe.control_weights
elif not self.current_timestep_keyframe.inherit_missing:
self.weights = self.weights_default
if self.current_timestep_keyframe.has_latent_keyframes():
self.latent_keyframes = self.current_timestep_keyframe.latent_keyframes
elif not self.current_timestep_keyframe.inherit_missing:
self.latent_keyframes = None
if self.current_timestep_keyframe.has_mask_hint():
self.tk_mask_cond_hint_original = self.current_timestep_keyframe.mask_hint_orig
elif not self.current_timestep_keyframe.inherit_missing:
del self.tk_mask_cond_hint_original
self.tk_mask_cond_hint_original = None
# if guarantee_usage, stop searching for other TKs
if self.current_timestep_keyframe.guarantee_usage:
break
# if eval_tk is outside of percent range, stop looking further
else:
break
# if index changed, apply overrides
if prev_index != self.current_timestep_index:
if self.weights_override is not None:
self.weights = self.weights_override
if self.latent_keyframe_override is not None:
self.latent_keyframes = self.latent_keyframe_override
# make sure weights and latent_keyframes are in a workable state
# Note: each AdvancedControlBase should create their own get_universal_weights class
self.prepare_weights()
def prepare_weights(self):
if self.weights is None or self.weights.weight_type == ControlWeightType.DEFAULT:
self.weights = self.weights_default
elif self.weights.weight_type == ControlWeightType.UNIVERSAL:
# if universal and weight_mask present, no need to convert
if self.weights.weight_mask is not None:
return
self.weights = self.get_universal_weights()
def get_universal_weights(self) -> ControlWeights:
return self.weights
def set_cond_hint_mask(self, mask_hint):
self.mask_cond_hint_original = mask_hint
return self
def pre_run_inject(self, model, percent_to_timestep_function):
self.base.pre_run(model, percent_to_timestep_function)
self.pre_run_advanced(model, percent_to_timestep_function)
def pre_run_advanced(self, model, percent_to_timestep_function):
# for each timestep keyframe, calculate the start_t
for tk in self.timestep_keyframes.keyframes:
tk.start_t = percent_to_timestep_function(tk.start_percent)
# clear variables
self.cleanup_advanced()
def get_control_inject(self, x_noisy, t, cond, batched_number):
# prepare timestep and everything related
self.prepare_current_timestep(t=t, batched_number=batched_number)
# if should not perform any actions for the controlnet, exit without doing any work
if self.strength == 0.0 or self.current_timestep_keyframe.strength == 0.0:
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if control_prev is not None:
return control_prev
else:
return None
# otherwise, perform normal function
return self.get_control_advanced(x_noisy, t, cond, batched_number)
def get_control_advanced(self, x_noisy, t, cond, batched_number):
pass
def calc_weight(self, idx: int, x: Tensor, layers: int) -> Union[float, Tensor]:
if self.weights.weight_mask is not None:
# prepare weight mask
self.prepare_weight_mask_cond_hint(x, self.batched_number)
# adjust mask for current layer and return
return torch.pow(self.weight_mask_cond_hint, self.get_calc_pow(idx=idx, layers=layers))
return self.weights.get(idx=idx)
def get_calc_pow(self, idx: int, layers: int) -> int:
return (layers-1)-idx
def apply_advanced_strengths_and_masks(self, x: Tensor, batched_number: int):
# apply strengths, and get batch indeces to null out
# AKA latents that should not be influenced by ControlNet
if self.latent_keyframes is not None:
latent_count = x.size(0)//batched_number
indeces_to_null = set(range(latent_count))
mapped_indeces = None
# if expecting subdivision, will need to translate between subset and actual idx values
if self.sub_idxs:
mapped_indeces = {}
for i, actual in enumerate(self.sub_idxs):
mapped_indeces[actual] = i
for keyframe in self.latent_keyframes:
real_index = keyframe.batch_index
# if negative, count from end
if real_index < 0:
real_index += latent_count if self.sub_idxs is None else self.full_latent_length
# if not mapping indeces, what you see is what you get
if mapped_indeces is None:
if real_index in indeces_to_null:
indeces_to_null.remove(real_index)
# otherwise, see if batch_index is even included in this set of latents
else:
real_index = mapped_indeces.get(real_index, None)
if real_index is None:
continue
indeces_to_null.remove(real_index)
# if real_index is outside the bounds of latents, don't apply
if real_index >= latent_count or real_index < 0:
continue
# apply strength for each batched cond/uncond
for b in range(batched_number):
x[(latent_count*b)+real_index] = x[(latent_count*b)+real_index] * keyframe.strength
# null them out by multiplying by null_latent_kf_strength
for batch_index in indeces_to_null:
# apply null for each batched cond/uncond
for b in range(batched_number):
x[(latent_count*b)+batch_index] = x[(latent_count*b)+batch_index] * self.current_timestep_keyframe.null_latent_kf_strength
# apply masks, resizing mask to required dims
if self.mask_cond_hint is not None:
masks = prepare_mask_batch(self.mask_cond_hint, x.shape)
x[:] = x[:] * masks
if self.tk_mask_cond_hint is not None:
masks = prepare_mask_batch(self.tk_mask_cond_hint, x.shape)
x[:] = x[:] * masks
# apply timestep keyframe strengths
if self.current_timestep_keyframe.strength != 1.0:
x[:] *= self.current_timestep_keyframe.strength
def control_merge_inject(self: 'AdvancedControlBase', control_input, control_output, control_prev, output_dtype):
out = {'input':[], 'middle':[], 'output': []}
if control_input is not None:
for i in range(len(control_input)):
key = 'input'
x = control_input[i]
if x is not None:
self.apply_advanced_strengths_and_masks(x, self.batched_number)
x *= self.strength * self.calc_weight(i, x, len(control_input))
if x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].insert(0, x)
if control_output is not None:
for i in range(len(control_output)):
if i == (len(control_output) - 1):
key = 'middle'
index = 0
else:
key = 'output'
index = i
x = control_output[i]
if x is not None:
self.apply_advanced_strengths_and_masks(x, self.batched_number)
if self.global_average_pooling:
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
x *= self.strength * self.calc_weight(i, x, len(control_output))
if x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].append(x)
if control_prev is not None:
for x in ['input', 'middle', 'output']:
o = out[x]
for i in range(len(control_prev[x])):
prev_val = control_prev[x][i]
if i >= len(o):
o.append(prev_val)
elif prev_val is not None:
if o[i] is None:
o[i] = prev_val
else:
o[i] += prev_val
return out
def prepare_mask_cond_hint(self, x_noisy: Tensor, t, cond, batched_number, dtype=None):
self._prepare_mask("mask_cond_hint", self.mask_cond_hint_original, x_noisy, t, cond, batched_number, dtype)
self.prepare_tk_mask_cond_hint(x_noisy, t, cond, batched_number, dtype)
def prepare_tk_mask_cond_hint(self, x_noisy: Tensor, t, cond, batched_number, dtype=None):
return self._prepare_mask("tk_mask_cond_hint", self.current_timestep_keyframe.mask_hint_orig, x_noisy, t, cond, batched_number, dtype)
def prepare_weight_mask_cond_hint(self, x_noisy: Tensor, batched_number, dtype=None):
return self._prepare_mask("weight_mask_cond_hint", self.weights.weight_mask, x_noisy, t=None, cond=None, batched_number=batched_number, dtype=dtype, direct_attn=True)
def _prepare_mask(self, attr_name, orig_mask: Tensor, x_noisy: Tensor, t, cond, batched_number, dtype=None, direct_attn=False):
# make mask appropriate dimensions, if present
if orig_mask is not None:
out_mask = getattr(self, attr_name)
if self.sub_idxs is not None or out_mask is None or x_noisy.shape[2] * 8 != out_mask.shape[1] or x_noisy.shape[3] * 8 != out_mask.shape[2]:
self._reset_attr(attr_name)
del out_mask
# TODO: perform upscale on only the sub_idxs masks at a time instead of all to conserve RAM
# resize mask and match batch count
multiplier = 1 if direct_attn else 8
out_mask = prepare_mask_batch(orig_mask, x_noisy.shape, multiplier=multiplier)
actual_latent_length = x_noisy.shape[0] // batched_number
out_mask = comfy.utils.repeat_to_batch_size(out_mask, actual_latent_length if self.sub_idxs is None else self.full_latent_length)
if self.sub_idxs is not None:
out_mask = out_mask[self.sub_idxs]
# make cond_hint_mask length match x_noise
if x_noisy.shape[0] != out_mask.shape[0]:
out_mask = broadcast_image_to(out_mask, x_noisy.shape[0], batched_number)
# default dtype to be same as x_noisy
if dtype is None:
dtype = x_noisy.dtype
setattr(self, attr_name, out_mask.to(dtype=dtype).to(self.device))
del out_mask
def _reset_attr(self, attr_name, new_value=None):
if hasattr(self, attr_name):
delattr(self, attr_name)
setattr(self, attr_name, new_value)
def cleanup_inject(self):
self.base.cleanup()
self.cleanup_advanced()
def cleanup_advanced(self):
self.sub_idxs = None
self.full_latent_length = 0
self.context_length = 0
self.t = None
self.batched_number = None
self.weights = None
self.latent_keyframes = None
# timestep stuff
self.current_timestep_keyframe = None
self.next_timestep_keyframe = None
self.current_timestep_index = -1
# clear mask hints
if self.mask_cond_hint is not None:
del self.mask_cond_hint
self.mask_cond_hint = None
if self.tk_mask_cond_hint_original is not None:
del self.tk_mask_cond_hint_original
self.tk_mask_cond_hint_original = None
if self.tk_mask_cond_hint is not None:
del self.tk_mask_cond_hint
self.tk_mask_cond_hint = None
if self.weight_mask_cond_hint is not None:
del self.weight_mask_cond_hint
self.weight_mask_cond_hint = None
def copy_to_advanced(self, copied: 'AdvancedControlBase'):
copied.mask_cond_hint_original = self.mask_cond_hint_original
copied.weights_override = self.weights_override
copied.latent_keyframe_override = self.latent_keyframe_override
class ControlNetAdvanced(ControlNet, AdvancedControlBase):
def __init__(self, control_model, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, device=None):
super().__init__(control_model=control_model, global_average_pooling=global_average_pooling, device=device)
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controlnet())
def get_universal_weights(self) -> ControlWeights:
raw_weights = [(self.weights.base_multiplier ** float(12 - i)) for i in range(13)]
return ControlWeights.controlnet(raw_weights, self.weights.flip_weights)
def get_control_advanced(self, x_noisy, t, cond, batched_number):
# perform special version of get_control that supports sliding context and masks
return self.sliding_get_control(x_noisy, t, cond, batched_number)
def sliding_get_control(self, x_noisy: Tensor, t, cond, batched_number):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
output_dtype = x_noisy.dtype
# make cond_hint appropriate dimensions
# TODO: change this to not require cond_hint upscaling every step when self.sub_idxs are present
if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
# if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling
if self.sub_idxs is not None and self.cond_hint_original.size(0) >= self.full_latent_length:
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original[self.sub_idxs], x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
else:
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").to(self.control_model.dtype).to(self.device)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
# prepare mask_cond_hint
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, dtype=self.control_model.dtype)
context = cond['c_crossattn']
# uses 'y' in new ComfyUI update
y = cond.get('y', None)
if y is None: # TODO: remove this in the future since no longer used by newest ComfyUI
y = cond.get('c_adm', None)
if y is not None:
y = y.to(self.control_model.dtype)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
control = self.control_model(x=x_noisy.to(self.control_model.dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(self.control_model.dtype), y=y)
return self.control_merge(None, control, control_prev, output_dtype)
def copy(self):
c = ControlNetAdvanced(self.control_model, self.timestep_keyframes, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
self.copy_to_advanced(c)
return c
@staticmethod
def from_vanilla(v: ControlNet, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlNetAdvanced':
return ControlNetAdvanced(control_model=v.control_model, timestep_keyframes=timestep_keyframe,
global_average_pooling=v.global_average_pooling, device=v.device)
class T2IAdapterAdvanced(T2IAdapter, AdvancedControlBase):
def __init__(self, t2i_model, timestep_keyframes: TimestepKeyframeGroup, channels_in, device=None):
super().__init__(t2i_model=t2i_model, channels_in=channels_in, device=device)
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.t2iadapter())
def get_universal_weights(self) -> ControlWeights:
raw_weights = [(self.weights.base_multiplier ** float(7 - i)) for i in range(8)]
raw_weights = [raw_weights[-8], raw_weights[-3], raw_weights[-2], raw_weights[-1]]
raw_weights = get_properly_arranged_t2i_weights(raw_weights)
return ControlWeights.t2iadapter(raw_weights, self.weights.flip_weights)
def get_calc_pow(self, idx: int, layers: int) -> int:
# match how T2IAdapterAdvanced deals with universal weights
indeces = [7 - i for i in range(8)]
indeces = [indeces[-8], indeces[-3], indeces[-2], indeces[-1]]
indeces = get_properly_arranged_t2i_weights(indeces)
return indeces[idx]
def get_control_advanced(self, x_noisy, t, cond, batched_number):
# prepare timestep and everything related
self.prepare_current_timestep(t=t, batched_number=batched_number)
try:
# if sub indexes present, replace original hint with subsection
if self.sub_idxs is not None:
# cond hints
full_cond_hint_original = self.cond_hint_original
del self.cond_hint
self.cond_hint = None
self.cond_hint_original = full_cond_hint_original[self.sub_idxs]
# mask hints
self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number)
return super().get_control(x_noisy, t, cond, batched_number)
finally:
if self.sub_idxs is not None:
# replace original cond hint
self.cond_hint_original = full_cond_hint_original
del full_cond_hint_original
def copy(self):
c = T2IAdapterAdvanced(self.t2i_model, self.timestep_keyframes, self.channels_in)
self.copy_to(c)
self.copy_to_advanced(c)
return c
def cleanup(self):
super().cleanup()
self.cleanup_advanced()
@staticmethod
def from_vanilla(v: T2IAdapter, timestep_keyframe: TimestepKeyframeGroup=None) -> 'T2IAdapterAdvanced':
return T2IAdapterAdvanced(t2i_model=v.t2i_model, timestep_keyframes=timestep_keyframe, channels_in=v.channels_in, device=v.device)
class ControlLoraAdvanced(ControlLora, AdvancedControlBase):
def __init__(self, control_weights, timestep_keyframes: TimestepKeyframeGroup, global_average_pooling=False, device=None):
super().__init__(control_weights=control_weights, global_average_pooling=global_average_pooling, device=device)
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllora())
# use some functions from ControlNetAdvanced
self.get_control_advanced = ControlNetAdvanced.get_control_advanced.__get__(self, type(self))
self.sliding_get_control = ControlNetAdvanced.sliding_get_control.__get__(self, type(self))
def get_universal_weights(self) -> ControlWeights:
raw_weights = [(self.weights.base_multiplier ** float(9 - i)) for i in range(10)]
return ControlWeights.controllora(raw_weights, self.weights.flip_weights)
def copy(self):
c = ControlLoraAdvanced(self.control_weights, self.timestep_keyframes, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
self.copy_to_advanced(c)
return c
def cleanup(self):
super().cleanup()
self.cleanup_advanced()
@staticmethod
def from_vanilla(v: ControlLora, timestep_keyframe: TimestepKeyframeGroup=None) -> 'ControlLoraAdvanced':
return ControlLoraAdvanced(control_weights=v.control_weights, timestep_keyframes=timestep_keyframe,
global_average_pooling=v.global_average_pooling, device=v.device)
class ControlLLLiteAdvanced(ControlNet, AdvancedControlBase):
def __init__(self, control_weights, timestep_keyframes: TimestepKeyframeGroup, device=None):
AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllllite())
def load_controlnet(ckpt_path, timestep_keyframe: TimestepKeyframeGroup=None, model=None):
control = comfy_cn.load_controlnet(ckpt_path, model=model)
# TODO: support controlnet-lllite
# if is None, see if is a non-vanilla ControlNet
# if control is None:
# controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
# # check if lllite
# if "lllite_unet" in controlnet_data:
# pass
return convert_to_advanced(control, timestep_keyframe=timestep_keyframe)
def convert_to_advanced(control, timestep_keyframe: TimestepKeyframeGroup=None):
# if already advanced, leave it be
if is_advanced_controlnet(control):
return control
# if exactly ControlNet returned, transform it into ControlNetAdvanced
if type(control) == ControlNet:
return ControlNetAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
# if exactly ControlLora returned, transform it into ControlLoraAdvanced
elif type(control) == ControlLora:
return ControlLoraAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
# if T2IAdapter returned, transform it into T2IAdapterAdvanced
elif isinstance(control, T2IAdapter):
return T2IAdapterAdvanced.from_vanilla(v=control, timestep_keyframe=timestep_keyframe)
# otherwise, leave it be - might be something I am not supporting yet
return control
def is_advanced_controlnet(input_object):
return hasattr(input_object, "sub_idxs")
# adapted from comfy/sample.py
def prepare_mask_batch(mask: Tensor, shape: Tensor, multiplier: int=1, match_dim1=False):
mask = mask.clone()
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2]*multiplier, shape[3]*multiplier), mode="bilinear")
if match_dim1:
mask = torch.cat([mask] * shape[1], dim=1)
return mask
# applies min-max normalization, from:
# https://stackoverflow.com/questions/68791508/min-max-normalization-of-a-tensor-in-pytorch
def normalize_min_max(x: Tensor, new_min = 0.0, new_max = 1.0):
x_min, x_max = x.min(), x.max()
return (((x - x_min)/(x_max - x_min)) * (new_max - new_min)) + new_min
def linear_conversion(x, x_min=0.0, x_max=1.0, new_min=0.0, new_max=1.0):
return (((x - x_min)/(x_max - x_min)) * (new_max - new_min)) + new_min
class WeightTypeException(TypeError):
"Raised when weight not compatible with AdvancedControlBase object"
pass
|