File size: 4,244 Bytes
a214e6b c65cec8 a214e6b c65cec8 a214e6b c65cec8 a214e6b c65cec8 a214e6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
---
language:
- zh-TW
license: apache-2.0
tags:
- automatic-speech-recognition
- common_voice
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: ''
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
#
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the COMMON_VOICE - ZH-TW dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1786
- Wer: 0.8594
- Cer: 0.2964
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 64.6189 | 2.51 | 500 | 63.8077 | 1.0 | 1.0 |
| 8.0561 | 5.03 | 1000 | 6.8014 | 1.0 | 1.0 |
| 6.0427 | 7.54 | 1500 | 6.0745 | 1.0 | 1.0 |
| 5.9357 | 10.05 | 2000 | 5.8682 | 1.0 | 1.0 |
| 5.0489 | 12.56 | 2500 | 4.4032 | 0.9990 | 0.7750 |
| 4.6184 | 15.08 | 3000 | 3.8383 | 0.9983 | 0.6768 |
| 4.365 | 17.59 | 3500 | 3.4633 | 0.9959 | 0.6299 |
| 4.1026 | 20.1 | 4000 | 3.0732 | 0.9902 | 0.5814 |
| 3.8655 | 22.61 | 4500 | 2.7638 | 0.9868 | 0.5465 |
| 3.6991 | 25.13 | 5000 | 2.4759 | 0.9811 | 0.5088 |
| 3.4894 | 27.64 | 5500 | 2.2937 | 0.9746 | 0.4852 |
| 3.3983 | 30.15 | 6000 | 2.1684 | 0.9733 | 0.4674 |
| 3.2736 | 32.66 | 6500 | 2.0372 | 0.9659 | 0.4458 |
| 3.1884 | 35.18 | 7000 | 1.9267 | 0.9648 | 0.4329 |
| 3.1248 | 37.69 | 7500 | 1.8408 | 0.9591 | 0.4217 |
| 3.0381 | 40.2 | 8000 | 1.7531 | 0.9503 | 0.4074 |
| 2.9515 | 42.71 | 8500 | 1.6880 | 0.9459 | 0.3967 |
| 2.8704 | 45.23 | 9000 | 1.6264 | 0.9378 | 0.3884 |
| 2.8128 | 47.74 | 9500 | 1.5621 | 0.9341 | 0.3782 |
| 2.7386 | 50.25 | 10000 | 1.5011 | 0.9243 | 0.3664 |
| 2.6646 | 52.76 | 10500 | 1.4608 | 0.9192 | 0.3575 |
| 2.6072 | 55.28 | 11000 | 1.4251 | 0.9148 | 0.3501 |
| 2.569 | 57.79 | 11500 | 1.3837 | 0.9060 | 0.3462 |
| 2.5091 | 60.3 | 12000 | 1.3589 | 0.9070 | 0.3392 |
| 2.4588 | 62.81 | 12500 | 1.3261 | 0.8966 | 0.3284 |
| 2.4083 | 65.33 | 13000 | 1.3052 | 0.8982 | 0.3265 |
| 2.3787 | 67.84 | 13500 | 1.2997 | 0.8908 | 0.3243 |
| 2.3457 | 70.35 | 14000 | 1.2778 | 0.8898 | 0.3187 |
| 2.3099 | 72.86 | 14500 | 1.2661 | 0.8830 | 0.3172 |
| 2.2559 | 75.38 | 15000 | 1.2475 | 0.8851 | 0.3143 |
| 2.2264 | 77.89 | 15500 | 1.2319 | 0.8739 | 0.3085 |
| 2.196 | 80.4 | 16000 | 1.2218 | 0.8722 | 0.3049 |
| 2.1613 | 82.91 | 16500 | 1.2093 | 0.8719 | 0.3051 |
| 2.1455 | 85.43 | 17000 | 1.2055 | 0.8624 | 0.3005 |
| 2.1193 | 87.94 | 17500 | 1.1975 | 0.8600 | 0.2982 |
| 2.0911 | 90.45 | 18000 | 1.1960 | 0.8648 | 0.3003 |
| 2.0884 | 92.96 | 18500 | 1.1871 | 0.8638 | 0.2971 |
| 2.0766 | 95.48 | 19000 | 1.1814 | 0.8617 | 0.2967 |
| 2.0735 | 97.99 | 19500 | 1.1801 | 0.8621 | 0.2969 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
|