File size: 3,199 Bytes
377d3d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# Copyright (c) OpenMMLab. All rights reserved.
import json
import os

import torch
from datasets import Dataset as HFDataset
from datasets import DatasetDict
from mmengine.config import Config, ConfigDict
from PIL import Image
from torch.utils.data import Dataset

from xtuner.registry import BUILDER
from .huggingface import process_hf_dataset
from .utils import expand2square


class LLaVADataset(Dataset):

    def __init__(self,
                 data_path,
                 image_folder,
                 tokenizer,
                 image_processor,
                 max_dataset_length=None,
                 dataset_map_fn=None,
                 template_map_fn=None,
                 max_length=2048,
                 pad_image_to_square=False):
        super().__init__()

        json_data = json.load(open(data_path))
        for idx in range(len(json_data)):
            if isinstance(json_data[idx]['id'], int):
                json_data[idx]['id'] = str(json_data[idx]['id'])
        json_data = DatasetDict({'train': HFDataset.from_list(json_data)})
        self.text_data = process_hf_dataset(
            dataset=json_data,
            tokenizer=tokenizer,
            max_length=max_length,
            dataset_map_fn=dataset_map_fn,
            template_map_fn=template_map_fn,
            split='train',
            max_dataset_length=max_dataset_length,
            remove_unused_columns=False,
            pack_to_max_length=False,
            with_image_token=True)

        self.image_folder = image_folder
        if isinstance(image_processor, dict) or isinstance(
                image_processor, Config) or isinstance(image_processor,
                                                       ConfigDict):
            self.image_processor = BUILDER.build(image_processor)
        else:
            self.image_processor = image_processor
        self.pad_image_to_square = pad_image_to_square

    @property
    def modality_length(self):
        length_list = []
        for data_dict in self.text_data:
            cur_len = len(data_dict['input_ids'])
            if data_dict.get('image', None) is None:
                cur_len = -cur_len
            length_list.append(cur_len)
        return length_list

    def __len__(self):
        return len(self.text_data)

    def __getitem__(self, index):
        data_dict = self.text_data[index]
        if data_dict.get('image', None) is not None:
            image_file = data_dict['image']
            image = Image.open(os.path.join(self.image_folder,
                                            image_file)).convert('RGB')
            if self.pad_image_to_square:
                image = expand2square(
                    image,
                    tuple(
                        int(x * 255) for x in self.image_processor.image_mean))
            image = self.image_processor.preprocess(
                image, return_tensors='pt')['pixel_values'][0]
            data_dict['pixel_values'] = image
        else:
            size = self.image_processor.size
            data_dict['pixel_values'] = torch.zeros(3, size['height'],
                                                    size['width'])
        return data_dict