File size: 7,895 Bytes
f265c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,
                            LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import (AutoModelForCausalLM, AutoTokenizer,
                          BitsAndBytesConfig, SiglipImageProcessor,
                          SiglipVisionModel)

from xtuner.dataset import LLaVADataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.map_fns import llava_map_fn, template_map_fn_factory
from xtuner.dataset.samplers import LengthGroupedSampler
from xtuner.engine.hooks import DatasetInfoHook, EvaluateChatHook
from xtuner.engine.runner import TrainLoop
from xtuner.model import LLaVAModel
from xtuner.utils import PROMPT_TEMPLATE

#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
llm_name_or_path = 'internlm/internlm2-chat-1_8b'
visual_encoder_name_or_path = 'google/siglip-so400m-patch14-384'
# Specify the pretrained pth
pretrained_pth = './work_dirs/pretrain/iter_8721.pth'

# Data
data_root = './'
data_path = data_root + 'LLaVA-Instruct-150K/llava_v1_5_mix665k.json'
image_folder = data_root + 'llava_images'
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = int(2048 - (336 / 14)**2)

# Scheduler & Optimizer
batch_size = 4  # per_device
accumulative_counts = 8
dataloader_num_workers = 4
prefetch = 5
max_epochs = 1
optim_type = AdamW
lr = 2e-4
betas = (0.9, 0.999)
weight_decay = 0
max_norm = 1  # grad clip
warmup_ratio = 0.03

# Save
save_steps = 500
save_total_limit = 2  # Maximum checkpoints to keep (-1 means unlimited)

# Evaluate the generation performance during the training
evaluation_freq = 500
SYSTEM = ''
evaluation_images = 'https://llava-vl.github.io/static/images/view.jpg'
evaluation_inputs = ['请描述一下这张照片', 'Please describe this picture']

#######################################################################
#            PART 2  Model & Tokenizer & Image Processor              #
#######################################################################
tokenizer = dict(
    type=AutoTokenizer.from_pretrained,
    pretrained_model_name_or_path=llm_name_or_path,
    trust_remote_code=True,
    padding_side='right')

image_processor = dict(
    type=SiglipImageProcessor.from_pretrained,
    pretrained_model_name_or_path=visual_encoder_name_or_path,
    trust_remote_code=True)

model = dict(
    type=LLaVAModel,
    freeze_llm=True,
    freeze_visual_encoder=True,
    pretrained_pth=pretrained_pth,
    llm=dict(
        type=AutoModelForCausalLM.from_pretrained,
        pretrained_model_name_or_path=llm_name_or_path,
        trust_remote_code=True,
        torch_dtype=torch.float16,
        quantization_config=dict(
            type=BitsAndBytesConfig,
            load_in_4bit=True,
            load_in_8bit=False,
            llm_int8_threshold=6.0,
            llm_int8_has_fp16_weight=False,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type='nf4')),
    llm_lora=dict(
        type=LoraConfig,
        r=512,
        lora_alpha=256,
        lora_dropout=0.05,
        bias='none',
        task_type='CAUSAL_LM'),
    visual_encoder=dict(
        type=SiglipVisionModel.from_pretrained,
        pretrained_model_name_or_path=visual_encoder_name_or_path),
    visual_encoder_lora=dict(
        type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.05, bias='none'),
    )

#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
llava_dataset = dict(
    type=LLaVADataset,
    data_path=data_path,
    image_folder=image_folder,
    tokenizer=tokenizer,
    image_processor=image_processor,
    dataset_map_fn=llava_map_fn,
    template_map_fn=dict(
        type=template_map_fn_factory, template=prompt_template),
    max_length=max_length,
    pad_image_to_square=True)

train_dataloader = dict(
    batch_size=batch_size,
    num_workers=dataloader_num_workers,
    prefetch_factor=prefetch,
    dataset=llava_dataset,
    sampler=dict(
        type=LengthGroupedSampler,
        length_property='modality_length',
        per_device_batch_size=batch_size * accumulative_counts),
    collate_fn=dict(type=default_collate_fn))

#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(
    type=AmpOptimWrapper,
    optimizer=dict(
        type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),
    clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),
    accumulative_counts=accumulative_counts,
    loss_scale='dynamic',
    dtype='float16')

# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = [
    dict(
        type=LinearLR,
        start_factor=1e-5,
        by_epoch=True,
        begin=0,
        end=warmup_ratio * max_epochs,
        convert_to_iter_based=True),
    dict(
        type=CosineAnnealingLR,
        eta_min=0.0,
        by_epoch=True,
        begin=warmup_ratio * max_epochs,
        end=max_epochs,
        convert_to_iter_based=True)
]

# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)

#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
custom_hooks = [
    dict(type=DatasetInfoHook, tokenizer=tokenizer),
    dict(
        type=EvaluateChatHook,
        tokenizer=tokenizer,
        image_processor=image_processor,
        every_n_iters=evaluation_freq,
        evaluation_inputs=evaluation_inputs,
        evaluation_images=evaluation_images,
        system=SYSTEM,
        prompt_template=prompt_template)
]

# configure default hooks
default_hooks = dict(
    # record the time of every iteration.
    timer=dict(type=IterTimerHook),
    # print log every 10 iterations.
    logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),
    # enable the parameter scheduler.
    param_scheduler=dict(type=ParamSchedulerHook),
    # save checkpoint per `save_steps`.
    checkpoint=dict(
        type=CheckpointHook,
        by_epoch=False,
        interval=save_steps,
        max_keep_ckpts=save_total_limit),
    # set sampler seed in distributed evrionment.
    sampler_seed=dict(type=DistSamplerSeedHook),
)

# configure environment
env_cfg = dict(
    # whether to enable cudnn benchmark
    cudnn_benchmark=False,
    # set multi process parameters
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    # set distributed parameters
    dist_cfg=dict(backend='nccl'),
)

# set visualizer
from mmengine.visualization import Visualizer, TensorboardVisBackend
visualizer = dict(
    type=Visualizer,
    vis_backends=[dict(type=TensorboardVisBackend)]
)

# set log level
log_level = 'INFO'

# load from which checkpoint
load_from = None

# whether to resume training from the loaded checkpoint
resume = False

# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)

# set log processor
log_processor = dict(by_epoch=False)