File size: 1,297 Bytes
f541e68
 
 
 
5abc9f8
f541e68
a64cd4f
f541e68
5abc9f8
 
f541e68
 
 
 
 
 
 
5abc9f8
f541e68
 
 
 
 
 
 
5abc9f8
f541e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5abc9f8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
base_model: MingZhong/DialogLED-base-16384
tags:
- generated_from_trainer
- conversation_summarization
model-index:
- name: DialogLED-base-16384-QMSum-finetuned-10Epochs
  results: []
datasets:
- pszemraj/qmsum-cleaned
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DialogLED-large-5120-QMSum-finetuned-10Epochs

This model is a fine-tuned version of [MingZhong/DialogLED-base-16384](https://huggingface.co/MingZhong/DialogLED-base-16384) on the qmsum dataset.

## Model description

More information needed

## Intended uses & limitations

For dialouge summarization.

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10

### Training results



### Framework versions

- Transformers 4.39.3
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2