File size: 3,052 Bytes
0a1532a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
base_model: kavg/TrOCR-SIN-DeiT
tags:
- generated_from_trainer
model-index:
- name: TrOCR-SIN-DeiT-Handwritten
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TrOCR-SIN-DeiT-Handwritten
This model is a fine-tuned version of [kavg/TrOCR-SIN-DeiT](https://huggingface.co/kavg/TrOCR-SIN-DeiT) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.9839
- Cer: 0.5253
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2915 | 3.45 | 100 | 1.8613 | 0.6450 |
| 0.061 | 6.9 | 200 | 1.8118 | 0.5707 |
| 0.0363 | 10.34 | 300 | 2.3998 | 0.6420 |
| 0.0202 | 13.79 | 400 | 2.4144 | 0.6353 |
| 0.0329 | 17.24 | 500 | 2.4393 | 0.6577 |
| 0.0364 | 20.69 | 600 | 1.9231 | 0.5679 |
| 0.004 | 24.14 | 700 | 2.4344 | 0.5866 |
| 0.0167 | 27.59 | 800 | 3.0998 | 0.5744 |
| 0.0269 | 31.03 | 900 | 2.6785 | 0.5804 |
| 0.0151 | 34.48 | 1000 | 2.2443 | 0.5916 |
| 0.0008 | 37.93 | 1100 | 2.1480 | 0.5684 |
| 0.0067 | 41.38 | 1200 | 2.3553 | 0.5625 |
| 0.0198 | 44.83 | 1300 | 2.1915 | 0.5492 |
| 0.0002 | 48.28 | 1400 | 2.0370 | 0.5620 |
| 0.001 | 51.72 | 1500 | 2.4303 | 0.6056 |
| 0.1666 | 55.17 | 1600 | 2.3324 | 0.5627 |
| 0.0001 | 58.62 | 1700 | 2.8753 | 0.5582 |
| 0.0 | 62.07 | 1800 | 2.5749 | 0.5355 |
| 0.0002 | 65.52 | 1900 | 2.8105 | 0.5572 |
| 0.0 | 68.97 | 2000 | 2.5275 | 0.5462 |
| 0.1231 | 72.41 | 2100 | 2.7452 | 0.5477 |
| 0.0 | 75.86 | 2200 | 2.4278 | 0.5403 |
| 0.0 | 79.31 | 2300 | 3.0099 | 0.5487 |
| 0.0 | 82.76 | 2400 | 3.1290 | 0.5467 |
| 0.0 | 86.21 | 2500 | 2.7705 | 0.5263 |
| 0.0 | 89.66 | 2600 | 2.7828 | 0.5275 |
| 0.0 | 93.1 | 2700 | 3.2488 | 0.5345 |
| 0.0 | 96.55 | 2800 | 3.1309 | 0.5273 |
| 0.0 | 100.0 | 2900 | 2.9839 | 0.5253 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1
|