Fulcrum_Aura1 / README.md
Spanicin's picture
Upload folder using huggingface_hub
d3794c0 verified
|
raw
history blame
1.87 kB
---
license: apache-2.0
tags:
- merge
- mergekit
- lazymergekit
- mistralai/Mistral-7B-v0.1
- HuggingFaceH4/zephyr-7b-alpha
- cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
---
# Fulcrum_Aura1
Fulcrum_Aura1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)
* [HuggingFaceH4/zephyr-7b-alpha](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha)
* [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: mistralai/Mistral-7B-v0.1
layer_range: [0, 32]
- model: HuggingFaceH4/zephyr-7b-alpha
layer_range: [0, 32]
parameters:
density: 0.53
weight: 0.4
- model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
layer_range: [0, 32]
parameters:
density: 0.53
weight: 0.4
merge_method: dare_linear
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Spanicin/Fulcrum_Aura1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```